Commentary: Serotonin Receptor 2B Mediates Mechanical Hyperalgesia by Regulating Transient Receptor Potential Vanilloid 1

Yeu-Shiuan Su1*, and Wei-Hsin Sun1,2*
1Department of Life Sciences, National Central University, Jhongli, Taiwan
2Center for Biotechnology and Biomedical Engineering, National Central University, Jhongli, Taiwan

ABSTRACT

Serotonin [5-hydroxytryptamine (5-HT)] is an inflammatory mediator which contributes to inflammatory pain. We previously demonstrated that 5-HT-induced mechanical hyperalgesia is mediated by 5-HT2B but not by other 5-HT receptors. Our recent article provided further evidence how 5-HT2B regulates 5-HT-induced mechanical hyperalgesia, and suggested, that 5-HT2B mediates mechanical hyperalgesia through Gq/11-phospholipase Cβ (PLCβ)-protein kinase Cε (PKCε) pathway. Interestingly, transient receptor potential vanilloid 1 (TRPV1) also involves in 5-HT2B-mediated hyperalgesia. It was the first evidence that 5-HT receptor regulates TRP channel to affect mechanical hyperalgesia. It is a commentary on the recent article that suggests distinct roles of peptidergic (IB4-negative) and non-peptidergic (IB4-positive) nociceptors in regulating 5-HT-induced mechanical hyperalgesia. In IB4-negative neurons, 5-HT2B in response to 5-HT mediates PLCβ-PKCε to regulate TRPV1 function. In IB4-positive neurons, 5-HT2B may control 5-HT3 or other channels to regulate mechanical hyperalgesia.

Serotonin [5-hydroxytryptamine (5-HT)] is known as a neurotransmitter, which is involved in regulating transmission of nociceptive signals in central nerve system1. 5-HT is also an inflammatory mediator, released from immune cells, platelets and epithelial cells in the peripheral tissues. Mounting evidence has suggested that 5-HT is a pro-inflammatory and pro-nociceptive agent which can cause pain and hyperalgesia through activating various subtypes of 5-HT receptors which are present in primary afferents2-3. We previously demonstrated that 5-HT-induced mechanical hyperalgesia is attributed to 5-HT2B activation4. Our recent article provided more detail mechanism that 5-HT2B mediates Gq/11-phospholipase Cβ (PLCβ)-protein kinase Cε (PKCε) pathway to control mechanical hyperalgesia in both IB4-negative and -positive neurons. Interestingly, transient receptor potential vanilloid 1 (TRPV1) and 5-HT3 are also regulated by 5-HT2B in response to 5-HT mediates PLCβ-PKCε to regulate TRPV1 function. In IB4-positive neurons, 5-HT2B may control 5-HT3 or other channels to regulate mechanical hyperalgesia.

The distinct roles of IB4-negative and IB4-positive neurons in 5-HT-induced mechanical hyperalgesia

Pain transduction from the periphery to central nerve system depends on Aδ and C fiber sensory neurons5. C-fiber sensory neurons can be divided into two classes depended on their molecular properties. The peptidergic c-fiber expresses the neuropeptides calcitonin gene-related peptide (CGRP) and substance P (SP). The non-peptidergic c-fiber binds Isolectin B4 (IB4) and expresses glia...
cell-derived neurotrophic factor receptors (GDNF) and P2X3 receptors. IB₄-negative neurons have low action potential (AP) threshold and shorter AP duration than IB₄-positive neurons. IB₄-negative neurons are more important in transducing information about stimuli. Consistent with that 5-HT injection dramatically enhanced 5-HT-evoked intracellular calcium signals in IB₄-negative neurons, but not in IB₄-positive neurons. Therefore, IB₄-negative neurons are the major neurons responsible for transducing 5-HT stimuli to induce mechanical hyperalgesia. Blocking 5-HT₃ receptors before 5-HT injection inhibited the enhanced calcium signals in IB₄-negative neurons. It is correlated with behavioral results that blocking of 5-HT₃ receptors pathway inhibited mechanical hyperalgesia.

Although IB₄-positive neurons did no increases intracellular calcium signals after 5-HT injection, the number of the neurons responding to 5-HT was increased. IB₄-positive neurons with higher density of tetrodotoxin ((TTX)-resistant Na⁺ channel and longer AP could lead more efficient calcium influx into the presynaptic terminal, resulting in more transmitter release. IB₄-positive neurons mediating more reliable synaptic connection could participate maintenance of hyperalgesia. As expected, blocking 5-HT₃ PLCβ or PKCe before 5-HT injection also inhibited the calcium signals in IB₄-positive neurons.

In IB₄-negative neurons, 5-HT-induced calcium signals were inhibited by removal of extracellular calcium; while only some of IB₄-positive neurons were sensitive to calcium-free condition. It indicated that channels allow calcium influx may participate in 5-HT-induced calcium signals. TRPV1 and 5-HT₃ are identified to participate in the downstream of 5-HT₃-mediated signaling pathway in IB₄-positive and IB₄-negative neurons, respectively.

Participation of TRPV1 in 5-HT signaling transduction in IB₄-negative neurons: contribution to induction of mechanical hyperalgesia

TRPV1 is known as a heat and capsaicin receptor, which is widely expressed in sensory neurons, especially in c-fiber nociceptors. TRPV1 is expressed both in peptidergic and non-peptidergic c-fiber in rat but predominantly in peptidergic c-fiber by immunohistochemical analysis. Although capsaicin-induced calcium signals were greater in IB₄-positive neurons than in IB₄-negative neurons before 5-HT injection, capsaicin-evoked calcium signals were significantly enhanced in IB₄-negative neurons after 5-HT injection. Therefore, capsaicin-sensitive IB₄-negative neurons may play a role in 5-HT-induced mechanical hyperalgesia under regulation of 5-HT₃-PKCe.

As confirmed in animal behavioral studies, administration of a TRPV1 antagonist before 5-HT injection in mice inhibited 5-HT-induced mechanical hyperalgesia. Mice lacking TRPV1 genes also showed the absence of mechanical hyperalgesia after 5-HT injection. Even though TRPV1 participates in thermal hyperalgesia, several lines of evidence have also suggested that the involvement of TRPV1 in capsaicin, acid or CFA-induced mechanical hyperalgesia which indicated the involvement of TRPV1 in mechanical hyperalgesia. In those studies, TRPV1 is activated either by acid or by capsaicin. Despite that TRPV1 function is enhanced by 5-HT through PKA and PKC phosphorylation. However, no evidence demonstrated that TRPV1 can be activated by 5-HT. How 5-HT regulates TRPV1 function remains unclear. In addition to being activated by alkyl-isothiocyanate, capsaicin, acid, noxious heat and the pungent compound in mustard and wasabi, TRPV1 can be activated by some endogenous ligands. Anandamide (AEA), an endogenous fatty acid neurotransmitter derived from arachidonic acid (AA), can bind to and activate cannabinoid CB1 and CB2 receptors. The AEA is generated from N-acylphosphatidylethanolamides (NAPE) through phospholipase C-mediated hydrolysis and is reported to activate TRPV1. The data give one possible way that activation of 5-HT₃ receptor may mediate PLC leading AEA formation to activate TRPV1. Arachidonic acid (AA) is the precursor that can be metabolized by various enzymes. The products of lipoxygenase include 12- and 15-HEPETE, and 5-HETE that are also TRPV1 agonists. 5-HT₃ receptor activation activate phospholipase A2, leading the neuronal secretory of AA. Therefore, peripheral 5-HT₃ activation by 5-HT may relieve phosphatidylinositol 4,5-bisphosphate-dependent channel inhibition and generates endogenous ligands AEA or AA to activate and regulate peripheral TRPV1 function, resulting in mechanical hyperalgesia.

Participation of 5-HT₃ in 5-HT-induced calcium signal in IB₄-positive neurons: contribution to maintenance of mechanical hyperalgesia

The calcium signals in IB₄-negative neurons were completely dependent on 5-HT₃-PLCβ-PKCe signaling and TRPV1 activation as described above. 5-HT-induced calcium signals in IB₄-positive neurons were partially sensitive to removal of extracellular calcium, suggesting that the calcium signals may be from channels in both the plasma membrane and the endothelium reticulum (ER). 5-HT₃ receptor antagonist (Granisetron) specifically inhibited 5-HT-induced calcium signals in a small set of IB₄-positive population, explaining sensitivity of these neurons to removal of extracellular calcium. Thus, there are at least two distinct pathways in IB₄-positive neurons in response to 5-HT stimulation. One is 5-HT₃-PLCβ-PKCe pathway and the other is 5-HT₃-PLCβ-PKCe/5-HT₃ pathway.

5-HT₃ was found in pain-related regions and is involved in pain processing. In our previous study, mice with pre-injection of 5-HT₃ antagonist did not inhibit mechanical hyperalgesia but shortened the duration of pain after 5-HT
Mechanical hyperalgesia is also mediated by 5-HT2B receptors and itch responses. Similarly, 5-HT-induced itch through activating Gq/11-PLC pathway, reported25. 5-HT2 receptors were reported to respond for itch perception24. A distinct subgroup of c-fibers that were preferentially excited by pruritic compounds has been reported25. 5-HT3 receptors were reported to respond for 5-HT-induced itch through activating Gq/11-PLC pathway, which leads to mitogen-activate protein kinase (MAPK) and PKC activation26. GPCR-TRP channel pathways are the major pathways to itch responses. Similarly, 5-HT-induced mechanical hyperalgesia is also mediated by 5-HT2B-TRPV1 pathway. Our recent article also provides more detailed mechanisms about transduction and maintenance of pain signals. Transduction of noxious stimulus could be located at IB4-positive nociceptors and mediated by 5-HT2B,5-HT3 channel axis and 5-HT2B-second messenger pathways. The similarity of GPCR-TRP channel axis between pain and itch sensation suggests that mechanisms used in pain sensation are possibly involved in itch sensation.

Conclusions

The recent article demonstrated that peptidergic and non-peptidergic nociceptors mediate 5-HT signaling through distinct mechanisms to induce mechanical hyperalgesia. The axis of 5-HT2B-Gq-PLCβ-PKCε-TRPV1 used in peptidergic neurons contributes to induction of hyperalgesia, while the axis of 5-HT3-Gq-PLCβ-PKCε-5-HT3 in non-peptidergic neurons participates in maintenance of hyperalgesia. The GPCR-TRP channel axis used in pain sensation could be also involved in itch sensation.

References

