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ABSTRACT

One of the biggest challenges in the field of neurological disorders is the limited 
availability of freshly dissected human brain tissue. Therefore, the use of human 
induced pluripotent stem cells (hiPSCs) is important to develop human brain-like 
models to study the interaction of different brain cell types in health and disease. 
For physiologically relevant disease modeling, three-dimensional (3D) cell culture 
systems are of great importance because they provide a more representative in 
vivo-like micro-environment to the cells. The field of 3D cell culture systems using 
diverse hiPSC-derived cells is growing and gets steadily advanced. However, to 
this day, there is no cell culture model available that includes all brain cell types. 
Here, we review the latest improvements of 3D hiPSC-based cell culture systems in 
the field of neuroscience. We focus on innovations for the generation of neurons, 
astrocytes, oligodendrocytes, microglia as well as endothelial cells and pericytes. 

Introduction
Cell culture systems are an important in vitro tool in basic research 

and essential in drug discovery and development. The first cell 
culture experiment in history was performed in 1907 by Harrison and 
colleagues1 who developed a method to directly observe the growth of a 
nerve fiber cell. This innovation founded a new research field allowing 
the observation and study of growing and differentiating cells outside 
of an organism. Since that time, cell culture methods have been greatly 
advanced, and the two-dimensional (2D) cell culture systems evolved 
to be the standard in vitro tool. These 2D cell culture systems have 
already provided many insights into basic cellular functions, biological 
mechanisms and various disease processes. Especially in drug discovery 
and development, 2D cell culture systems are essential concerning 
compound testing and high-throughput screening (HTS) assays. 
However, 2D cell cultures do not represent the physiological in vivo 
microenvironment of the cells2. Usually, a homogenous cell population 
is cultured as a monolayer, while in vivo the cells are interacting with 
a heterogenous cell population. In addition, in physiological conditions 
the cells are interacting with multiple extracellular matrix (ECM) 
components, which can actively affect the behavior of the cells3. In 
fundamental and preclinical research, one of the biggest challenges is 
still the establishment of physiologically relevant in vitro models. To 
address this challenge, multiple three-dimensional (3D) cell culture 
systems have been developed. These 3D cell culture systems range from 
scaffold and scaffold-free techniques to more complex systems like 
organoids. Scaffold-based systems can create a 3D microenvironment, 
for example, by a network of nano- and microfibers4,5 or through 
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hydrogels6,7. Spheroids and complex organoid models 
allow the formation of self-assembled cell aggregates 
recapitulating the cellular organization and functionality 
of specific tissues or organs8-10. These different 3D cell 
culture systems provide a more representative in vivo-like 
microenvironment which influences cellular features like 
morphology, proliferation, differentiation and migration11,12. 
In drug discovery and development, 3D cell culture systems 
are more frequently used in HTS assays13,14. Recently, the 
U.S. Food and Drug Administration (FDA) modernization 
act 2.0 (2022) marked an advancement encompassing that 
the FDA is now allowed to approve biological products 
and drugs that have not been tested in animal models15. 
This milestone opens the door to a potential increase in 
cell-based models within pharmacological research in the 
coming years.

3D human induced pluripotent stem cell (hiPSC)-
based cell culture systems in neuroscience

Limited availability of human brain material poses a 
significant challenge in the field of studying neurological 
disorders. Post-mortem brain tissue provides a valuable 
source to study neuroanatomy and to perform molecular 
and neuropathological analysis16-18. Nevertheless, this 
material lacks information about functionality of cells which 
can only be examined with living cells. Therefore, the hiPSC 
technology is an essential tool to develop human brain-
like models. This technology enables the differentiation of 
the brain cell types of interest, also from diverse patient-
derived material. For physiologically relevant disease 
modeling it is important to consider all cell types present 
in the human brain. This includes different subtypes of 
neurons, astrocytes, oligodendrocytes, microglia as well 
as endothelial cells and pericytes. To date, there is still 
no existing cell culture model that encompasses all the 
above-mentioned cell types. This is primarily due to the 
difficulty in identifying the optimal culturing conditions 
necessary for the survival of each individual cell type. This 
mini-review will provide an overview of protocols for the 
generation and differentiation of these brain cell types in 
3D cell culture systems that have been steadily advanced 
and optimized over the last years.

Neurons and Astrocytes
Neurons are electrically excitable cells and the primary 

unit of the central nervous system (CNS). Astrocytes 
execute numerous functions to maintain homeostasis 
and ensure proper neuronal signaling. They support 
neurons, for example, by providing nutrients, regulating 
ion concentration and they participate in blood-brain 
barrier formation19. These two cell types interact very 
closely with each other. For small molecule-induced hiPSC-
based neuronal differentiation protocols, astrocytes are 
often generated in addition to ensure proper neuronal 

maturation4. Sato and colleagues20 developed a feeder-
free culture system for the generation of region-specific 
and high-purity neuronal cultures. The overexpression of 
the transcription factor neurogenin 2 (NGN2) can result 
in a heterogeneous neuronal cell population21,22 without 
the need of supporting astroglial cells. These systems can 
generate mature neurons faster21 compared to the small 
molecule-induced systems, but may lead to neuronal 
subpopulations more resembling neurons from the 
peripheral nervous system22. Co-culture models of neurons 
and astrocytes were established and advanced during 
the last years. The culturing of hiPSC-derived neurons 
and astrocytes in 3D systems includes scaffold-based23 
and scaffold-free systems24. As an example, Park and 
colleagues24 generated a 3D spheroid model with hiPSC-
derived neurons and astrocytes which is reproducible in 
regard to spheroid size and cell type composition which is 
of advantage for high-throughput drug efficacy screenings. 
Functional assays, like electrophysiological recordings, 
have a big impact in translational research in order to 
understand neuronal dynamics in health and disease. 
From traditional patch-clamp techniques25 to high-density 
microelectrode arrays26, single cell as well as network 
recordings can be performed nowadays revealing insights 
into cell communication. These techniques are already 
highly advanced for 2D systems and are recently improving 
for 3D applications27. 

Oligodendrocyte lineage cells 

hiPSC-derived oligodendrocyte lineage cells are often 
not included in co-culture systems, although they play an 
important role by myelinating and supporting neurons28. 
One reason might be that optimized protocols are limited 
and, in comparison to neurons, oligodendrocyte lineage 
cells develop over several intermediate stages29. In this 
regard, the generation and differentiation of highly mature 
and functional oligodendrocytes is challenging and takes a 
long time, especially if the differentiation is performed by 
mimicking the natural environment with small molecules30. 
One of the most frequently used protocols in this field was 
developed by Douvaras and Fossati31 resulting in mature 
oligodendrocytes after 75 days in vitro. We recently 
published a manuscript showing that this original protocol 
can be translated to a 3D cell culture system generating 
functional and myelinating oligodendrocytes4. Our 
protocol describes a scaffold-based 3D co-culture system 
of hiPSC-derived oligodendrocyte lineage cells and cortical 
neurons on nanofibers4. Ehrlich and colleagues32 also 
developed a protocol for the rapid and efficient generation 
of oligodendrocytes on aligned nanofibers. For a faster 
generation of myelinating oligodendrocytes they used 
the overexpression of specific oligodendrocyte lineage 
cell-directing factors, like SOX10 and OLIG232, which can 
be nowadays also applied for organoid systems33. There 
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are several protocols available to study oligodendrocytes 
with neural spheroids and organoids containing neurons, 
astrocytes and oligodendrocyte lineage cells33-37. For 
example, Kim and colleagues37 could show that organoid 
models reveal human oligodendrogenesis with ventral and 
dorsal origins by generating fused forebrain organoids. The 
development of a compact and multi-layered myelin sheath 
is of importance for functional readouts of myelination 
efficiency. To date, there is only one model with spinal 
cord-patterned myelinating organoids showing proper 
myelination after several months in vitro34. These different 
co-culture systems display useful disease modeling tools to 
study myelination biology in more physiologically relevant 
conditions. Nevertheless, for studies depending on mature 
and myelinating oligodendrocytes, time is the limiting 
factor which might impair the usability of the existing 
models for HTS assays.

Microglia
Microglia are the immune cells of the CNS fulfilling 

multiple tasks to support the developing brain as well as 
to maintain homeostasis38. The majority of the brain cells 
originates from the neuroectoderm, while microglial cells 
arise from the mesodermal germ layer with hematopoietic 
origin39. During early development, microglial precursor 
cells are migrating and infiltrating the CNS via the blood 
stream40. Therefore, cells of the microglial lineage need 
to be generated separately from neurons and the other 
glial cells (astrocytes and oligodendrocyte lineage cells) 
and afterwards introduced into the culture system. One 
approach is to integrate hiPSC-derived macrophage 
progenitors into organoids which are able to develop 
into mature microglial cells recapitulating cell-specific 
features41. Another approach was described by Xu 
and colleagues42 who developed a system to generate 
cerebral organoids where the microglia cells were able 
to phagocytose and prune synapses. It is important that 
microglia are integrated more frequently into co-culture 
systems because of their function as immune cells38. 
However, the proper maturation of these cells seems to 
be dependent on a supporting brain environment43. That 
is why there are still challenges to overcome, like the 
short-term survival and the absence of the expression of 
environment-specific factors43. Nevertheless, these cells 
have a great influence on the behavior of other brain cell 
types which brings them more into focus for neurological 
diseases44. 

Endothelial cells and Pericytes
Endothelial cells are the innermost layer that coats 

the interior walls of blood vessels directly contacting 
blood components45. Pericytes are mesenchymal-derived 
cells located within the capillary basement membrane 
close to astrocytic endfeet46. In the brain, these cells 

fulfill a special role because they form the blood-brain-
barrier (BBB). This is of vital importance regarding the 
maintenance of the brains’ micro-environment ensuring 
proper cell function47. Since the developing CNS does not 
naturally generate their progenitor cells, their integration 
into the model system becomes vital for proper function 
and maturation of different brain cell types48. Campisi 
and colleagues49 developed a 3D BBB model in fibrin gel 
exhibiting perfusable and selective microvasculature. 
Their microfluidic system comprises hiPSC-derived 
endothelial cells, pericytes and astrocytes as a self-
assembled vascular network. There are also different 
approaches to introduce vascularization into organoid 
systems. Cerebral organoids can be generated with a 
mix of hiPSCs and human umbilical vein endothelial cells 
(HUVECs) which supports the maturation of neurons50. 
Sun and colleagues51 could generate organoids that 
showed structures similar to the BBB. Therefore, they 
fused one brain organoid with two blood vessel organoids 
resulting in the generation of a vascularized brain 
organoid with selective permeability to molecules with 
different BBB penetration capabilities. They were able 
to reproduce some features of the BBB, but the tube-like 
structures of the blood vessels were not entirely formed51. 
Models including vascularization are essential tools for 
drug development in the field of neurological disorders 
because drugs need to pass the BBB to reach their target 
location.

Limitations of 3D hiPSC-based cell culture systems
3D cell culture systems are important for the generation 

of human-like cell culture models that can recapitulate 
physiological conditions by proper interaction of diverse 
brain cell types. Although these systems have advanced 
steadily over the last years, there are still some limitations. 
To this day, most automated analysis techniques/machines 
are built for 2D cell culture systems. There is a high need 
for advanced techniques applicable also for 3D cell culture 
systems, from applications like microscopy techniques 
to upscaling for automated generation and culturing 
of cells and HTS assays. In addition, more focus should 
be placed on functional readouts. Electrophysiological 
readout techniques, especially microelectrode arrays, are 
becoming more popular because user-friendly and easy-to-
handle devices are being commercialized. Although these 
systems can now also be used for 3D structures, such as 
organoids27, there is still the limitation that only the area 
where the organoid touches the electrodes is recorded. It is 
not possible to record the electrical signals from the   whole 
organoid52.

One other limitation especially for organoids, is the 
insufficient oxygen and nutrients supply and thus the 
development of a necrotic core, which is due to the lack of a 
properly functional vascularization system53.
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Conclusion
The field of 3D cell culture systems using diverse 

hiPSC-derived cells is growing and gets steadily advanced. 
However, there are still limitations and challenges to take 
to get closer to the best human brain-like model which 
is essential for disease modeling. As of today, achieving 
a complete representation of a neurological disease in a 
model is nearly impossible. Consequently, researchers are 
compelled to focus on individual aspects of a disease in 
order to establish disease-like models. Nonetheless, there 
remains a need for the development of cell culture models 
that incorporate all types of brain cells. Considerable efforts 
are currently being dedicated to advancing and refining 
these systems. The goal is to create functionally advanced, 
uniform and more standardized 3D cell culture systems 
that can be of great advantage for disease modeling.
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