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ABSTRACT

With dementia prevalence on the rise, it is imperative to develop novel 
therapies and treatments to address the increasing recognition of the clinical and 
pathological overlap of Alzheimer’s and cerebrovascular disease - the top two 
leading causes of dementia. Although the research methods currently employed 
have made great advances towards our understanding of comorbid neurovascular 
and neurodegenerative diseases, these knowledge-based silos have had a tendency 
to operate in relative isolation. As our cumulative body of knowledge within 
each platform increases, so should the coordination of research. By examining 
current findings in neuroimaging, neuropsychology, genetics, neuropathology, and 
molecular neurobiology, this blanket-level mini-review will examine the spectrum of 
research findings that contributes to our understanding of Alzheimer’s and vascular 
contributions to dementia.

Introduction 
Given our aging population, dementia was recently recognized by the 

World Health Organization as a public health priority. With Alzheimer’s 
disease (AD) and vascular dementia (VaD) as the top two leading causes 
of dementia, the need to develop novel treatment targets and more 
aggressive management strategies has never been greater. Although AD 
and VaD frequently co-occur and share common risk factors, they present 
and progress heterogeneously, encompassing a broad range of complex 
neurovascular and neurodegenerative pathological processes and 
etiologies. Recent advances in neuroimaging, neuropsychology, genetics, 
neuropathology, and molecular neurobiology  have led to the development 
of promising early biomarkers that have improved the diagnosis and 
prognostication of these co-contributors to dementia. However, despite 
these advances, research efforts often face challenges in bridging the 
interdisciplinary divide, often acting independently within cultural silos. 
To overcome these knowledge-translation obstacles the identification 
of future treatment targets may arise more effectively if our efforts turn 
towards the synthesis of findings across these knowledge platforms.

Neuroimaging
Advances in MRI segmentation techniques have yielded numerous 

useful biomarkers for measuring neurodegenerative and neurovascular 
burden in clinical and normal populations. The various combinations of 
these markers suggest that the vascular contributions to cognitive decline 
and AD neuropathology may be more closely related than previously 
thought. For example, the well-established AD markers of hippocampal 
volume1 and global atrophy were also recently acknowledged as 
significant MRI correlates of the cognitive dysfunctions outlined by the 
National Institute of Neurological Disorders and Stroke-Canadian Stroke 
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Network (NINDS-CSN) for vascular cognitive impairment2. 
Additionally, recent findings suggest that small vessel 
disease, manifested as white matter hyperintensities of 
presumed vascular origin (WMH), can interact with beta 
amyloid (Aβ) pathology to negatively impact hippocampal 
volume in non-demented elderly3. A similar association 
with hippocampal atrophy was also demonstrated in AD 
patients with cholinergic hyperintensities4, an interesting 
relationship as cholinesterase deficits have also been 
demonstrated in VaD independent of concomitant AD 
pathology5. Advances in cortical thickness measurement 
that led to the identification of a cortical signature for AD6 
have also yielded findings which suggest that vascular risk 
factors7 and WMH8,9 may also influence cortical thinning 
in AD and MCI signature regions, where watershed 
regions of vascular supply and rich club hubs of functional 
connectivity coincide10. Indeed, recent attention regarding 
the presence of WMH and lacunar infarcts in AD and 
MCI clinical populations have led numerous international 
groups to acknowledge vasculopathy as a core feature that 
needs to be addressed if we are to move forward with the 
improvement of clinical outcomes in dementia11–14. 

Although WMH and lacunar infarcts are the most 
commonly correlated markers of small vessel disease, 
measurements of other MRI-based small vessel disease 
markers have gained some recent attention15. As differential 
markers commonly associated with hypertensive 
arteriopathy and cerebral amyloid angiopathy (CAA), MRI-
visible perivascular spaces (PVS)16, cerebral microbleeds17, 
superficial siderosis18, and cortical microinfarcts19, are 
commonly assessed using visual rating scales; although 
some recent progress has been shown towards the automatic 
segmentation PVS16,20. Given the significant overlap 
between CAA and AD, as well as the increased risk for 
stroke and intracerebral hemorrhage21,22, the importance of 
cerebral microbleeds and superficial siderosis has justifiably 
garnered significant attention23,24. Moreover, the modified 
Boston criteria for the clinicoradiological diagnosis of 
sporadic possible/probable CAA is partially based on 
the burden of lobar microbleeds and superficial siderosis 
observed on MRI25. 

Moving beyond basic structural imaging markers, 
advanced neuroimaging techniques have also yielded 
novel findings that inform us on the overlap between 
neurodegenerative and neurovascular burden in clinical and 
elderly populations. Diffusion tensor imaging (DTI), an 
MRI-based measure of white matter structural integrity26, 
is increasingly being utilized in combination with markers 
of white matter small vessel disease burden and focal gray 
matter atrophy to assess structural and functional brain 
networks observed in cognitive impairment and AD27,28. 
Recently described as a cascading network failure in AD 
progression29, assessment of vascular disruptions along 

specific white matter tracts of the default mode network 
involves the use of ‘task-free’ functional MRI (fMRI), 
often in combination with structural imaging metrics30,31. 
Blood perfusion changes assessed by single photon 
emission computed tomography (SPECT), dynamic 
susceptibility contrast, and more recently, non-invasive 
arterial spin labelling (ASL) MRI, have also produced 
findings that further confirm the cerebral hypoperfusion 
and microvascular disease observed in AD32–35. Moreover, 
changes in the blood oxygen level-dependent (BOLD) 
signal in response to changes in end-tidal partial pressure 
of carbon dioxide (PETCO2) as a vasoactive stimulus has 
been used to assess cerebrovascular reactivity (CVR)36, 
providing additional insight to the progression of small 
vessel disease in dementia. Additionally, although still 
relatively understudied, as a literal ‘eye’ into the underlying 
Aβ, tauopathy, and vascular burden observed in the brain, 
recent findings have proposed the use of ocular and retinal 
abnormalities as novel non-invasive biomarkers in the study 
of AD and cerebrovascular disease37–39. 

Genetics
Moreover, many of these studies have included analyses 

that examine the associations between these imaging 
biomarkers and the presence of the apolipoprotein E epsilon 
4 (APOE4) allele on chromosome 19, a strong genetic marker 
of AD40, which has recently been implicated to influence 
poor gait41, post-stroke cognitive decline42, and VaD43. Large 
scale genome wide association studies (GWAS) analysis on 
74,046 individuals of European ancestry have identified at 
least 20 loci (including APOE) associated with late-onset 
AD44, although several rare genetic variants not detected by 
GWAS have also been suggested45–47. Genome wide meta-
analyses of small vessel disease, stroke, and their shared 
genetic contributions with AD have also reported significant 
findings48,49; however, a full understanding of these genetic 
associations, the underlying mechanisms they represent, and 
how this information translates into therapeutic advances is 
still underway.

Neuropathology
Several autopsy studies also report on the common 

comorbidity between cerebrovascular disease and AD 
pathology50–56, with some studies suggesting that vascular 
pathology may lower the threshold for dementia. Further 
analyses suggest several pathophysiological mechanisms 
including atherosclerosis in the Circle of Willis54,57, 
arteriosclerosis13, blood brain barrier dysfunction, pericyte 
loss58,59, hypoperfusion60, clasmatodendrosis61–63, and 
venous collagenosis64,65. Moreover, the common overlap 
of CAA and AD has been reported in several postmortem 
studies66–69, with one study combining two different 
longitudinal clinicopathological studies reporting CAA to 
be commonly (present in 79% of all cases) associated with 
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increased odds of AD dementia and an increased rate of 
decline in global cognition, perceptual speed, episodic and 
semantic memory70.

Molecular Neurobiology

Finally, recent attention has focused on understanding the 
systems of the brain which are responsible for fluid circulation 
and the clearance of waste and neurotoxic proteins, such as 
the Aβ, α-synuclein, and hyperphosphorylated tau within 
neurofibrillary tangles, found in AD and other dementia 
pathologies71. Of particular interest is the glymphatic 
system72, a complex system of perivascular tunnels 
surrounding cerebral veins and arteries, where parenchymal 
waste and interstitial solute clearance is primarily driven 
by the astroglial water channel aquaporin-473. Interestingly, 
preclinical models have demonstrated that the glymphatic 
system is primarily engaged during sleep74, suggesting that 
poor sleep may be associated with poor waste clearance, 
which was recently supported by a small proof-of-concept 
study on cerebrovascular disease patients using MRI-
visible perivascular spaces and polysomnography-derived 
sleep parameters75.

Parallel research based around the concept of protein 
elimination failure angiopathy (PEFA) in CAA and AD 
focuses on a cerebral waste clearance system driven by 
physiological functions around vascular basement membrane 
pathways76. Recent experiments using biotinylated and 
fluorescent Aβ injected into the hippocampus and tracers 
injected into the cerebrospinal fluid of mice suggest several 
basement membrane layer clearance pathways, possibly 
influenced by size, rigidity, and charge (positive/negative/
neutral) of the particles being transported77. 

Conclusion

As evidenced by this blanket-level mini-review of the 
findings from clinical, neuroimaging, genetics, pathology, 
and basic science research, it is hopefully evident that 100 
more papers correlating WMH with another cognitive 
test will no longer be sufficient to contribute to our 
understanding of the overlap between neurovascular and 
neurodegenerative disease. While there are some gaps 
within each of these knowledge-based platforms, it would 
also be important to consider bridging the interdisciplinary 
gaps between them as well. In order to provide a more 
comprehensive understanding of the complex neurological 
disease processes resulting in dementia, future work should 
focus on international research collaborations with multi-
modal, multi-platform, big data analytics. As a scientific 
community, we are now at a stage where effective progress 
towards therapeutic advances will likely arise from the 
analysis of progression data synthesized from numerous 
interdisciplinary platforms.
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