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ABSTRACT

Independent lines of research have documented elevated peripheral 
inflammation and brain white matter alterations in Gulf War Illness (GWI). We 
recently documented an association of C-reactive protein (CRP), a marker of 
inflammation, and decreased fornix white matter integrity in GWI. The aim of the 
present study was to extend those findings to evaluate the association between CRP 
and white matter anisotropy and diffusion throughout the brain in GWI.  Sixty-three 
veterans with GWI provided blood samples for evaluation of CRP and underwent a 
3T magnetic resonance imaging scan from which fractional anisotropy (FA), axial 
diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD) were obtained. 
An additional index characterizing the shape of the diffusion ellipsoid, Ca, which 
reflects deviation from sphericity (or isotropy) was obtained. Results demonstrated 
that CRP was significantly associated with decreased FA and Ca and with increased 
RD and MD, but not AD. These findings documenting a highly significant association 
between peripheral inflammation and specific white matter alterations in GWI 
are discussed in terms of GWI-related exposures that may promote systemic 
inflammation and deleterious neural effects downstream.

Introduction
Gulf War Illness (GWI) is increasingly recognized as a neuroimmune 

condition characterized by both neurological alterations and immune 
system disruptions hypothesized to stem from 1990-1991 Gulf War 
service-related exposures in genetically vulnerable individuals1,2. To 
that end, evidence of immune dysfunction including elevated peripheral 
inflammatory markers such as C-reactive protein (CRP) have been 
reported in veterans with GWI3-6 as have numerous structural and 
functional brain abnormalities involving both gray matter and white 
matter7-11. Furthermore, recent studies have documented associations 
between elevated CRP and brain abnormalities in veterans with GWI 
including evidence of cortical thinning and hippocampal atrophy10,11. 
With the exception of one study that documented an inverse association 
between CRP and fractional anisotropy of the fornix, the major output of 
the hippocampus10, the association of CRP with white matter integrity in 
GWI is unknown.

White matter anatomy is commonly evaluated with diffusion tensor 
imaging (DTI) which can be used to measure the movement of water 
molecules within axons12,13. Under normal conditions, water molecules 
are constrained by axonal membranes to diffuse mainly along the long 
axis of the axon; however, the loss of axonal integrity alters diffusion 
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properties. The most common DTI measures – fractional 
anisotropy (FA), axial diffusivity (AD), radial diffusivity 
(RD), and mean diffusivity (MD) - are extensively 
discussed elsewhere12-17. Briefly, FA reflects the extent 
to which diffusion is restricted. Values range from 0 to 1 
where lower values indicate less restriction (by axonal 
membranes), or isotropy, and higher values suggest that 
diffusion is anisotropic, or occurs in only one direction. 
FA is inversely related to directional diffusivity measures. 
These include AD, which describes diffusivity in the 
direction of the principal axis of the fiber tract, RD, which 
describes diffusion perpendicular to the primary axis, and 
MD, which is the combination of AD and RD. To describe 
specifically the shape of the diffusion tensor, additional 
metrics including linear (Cl), planar (Cp), and spherical 
(Cs) measures are used that represent its prolate, oblate, 
and spherical components, respectively. From these 
measures, Ca, which reflects deviation from sphericity, can 
be derived18.

Diffusion tensor imaging (DTI) studies have 
documented several white matter alterations in veterans 
with GWI. These include increased mean diffusivity in the 
right superior longitudinal fasciculus and increased axial 
diffusivity, particularly involving the right inferior fronto-
occipital fasciculus, in veterans with GWI relative to civilian 
controls19. A study comparing Gulf War veterans exposed to 
sarin and cyclosarin relative to unexposed veterans found 
evidence of increased radial diffusivity and pervasive axial 
diffusivity in the exposed veterans20. Significantly lower 
FA and higher RD and MD were reported in Gulf War 
veterans with chronic pain compared to healthy control 
Gulf War veterans21. Finally, a recent study documented 
decreased FA was inversely associated with CRP in Gulf 
War veterans10. In the present study we extended those 
findings by examining the association of C-reactive protein 
to several measures of brain white matter anisotropy and 
diffusivity in Gulf War veterans. 

Materials and Methods

Participants
 Sixty-three GWI patients (59 men and 4 women) 

were studied after providing an informed consent in 
accordance with the Declaration of Helsinki. GWI status 
was determined using a self-report symptom checklist that 
permits classification as GWI case or control according to 
the Center for Disease Control22 and the Kansas criteria23. 
The Center for Disease Control definition requires one 
or more symptoms in at least two domains that include 
fatigue, pain, or mood and cognition. The more restrictive 
Kansas criteria requires that veterans report moderate to 
severe symptoms in at least 3 of 6 domains: fatigue, pain, 
neurological/cognitive/mood, skin, gastrointestinal, and 
respiratory. All GWI veterans in the present study met 

both case definitions. Consistent with the Kansas criteria 
case definition, veterans were excluded from the study 
if they reported medical or psychiatric conditions that 
could account for GWI symptoms or impair reporting2. 
Individuals with traumatic brain injury were also excluded 
from the study. The study was approved by the University 
of Minnesota and Minneapolis VA Health Care System 
Institutional Review Boards.

Body Mass Index (BMI)
BMI was computed using the height and weight of the 

participant (BMI = kg/m2). 

CRP 
Non-fasting peripheral venous blood samples were 

collected for evaluation of high sensitivity C- reactive 
protein and analyzed using standard procedures by the 
Minneapolis VAHCS Clinical Laboratory. 

Magnetic Resonance Imaging (MRI) Acquisition

All data were acquired using a Philips 3.0 T MR scanner 
(Achieva, Philips Healthcare, Best, The Netherlands). In 
the initial phase of the study, data were acquired from 18 
participants using a phased array SENSitivity Encoding 
(SENSE) 8-channel head coil for reception. For each 
participant a high resolution T1-weighted Turbo Field 
Echo (T1w TFE SENSE) was obtained (168 sagittal slices, 
TR = 8.1932 ms, TE =3.7520 ms, Acquisition matrix 240 × 
240, Flip angle 8 deg., voxel size 0.9375 mm × 0.9375 mm × 
1 mm). Subsequently, upgrades were applied to the system 
and data were acquired for the remaining 45 participants 
using a phased array SENSitivity Encoding (SENSE) 
15-channel head coil for reception. For each participant a 
high resolution T1-weighted Turbo Field Echo (T1w TFE 
SENSE) was obtained (168 sagittal slices, TR =8.0928 ms, 
TE = 3.698 ms, Acquisition matrix 240 × 240, Flip angle 8 
deg., voxel size 0.7500 mm × 0.7500 mm × 1 mm). 

Diffusion weighted images (DWI, DTI_medium_iso_E) 
consisted of a single-shot echo-planar imaging sequence 
(EPI, TR=11.023 s, TE = 55 ms, Acquisition matrix 112 x 
112, 70 slices with 2 mm thickness without gap, in-plane 
resolution 0.875 mm x 0.875 mm). Images were acquired 
in the axial plane with diffusion gradients applied in 15 
non-collinear directions with a b-value of 1000 s/mm2 and 
one non-diffusion weighted image with a b-value of 0 s/
mm2. In advance of each acquisition a capsule of Vitamin 
E was taped to the participant’s right temple to determine 
orientation in the imaged data. 

Image Processing 
Diffusion data were analyzed using the default 

parameter settings in the diffusion MR toolbox Explore DTI, 
version 4.8.6 (www.exploredti.com24). Anatomical T1-w 
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images for each participant were linearly transformed into 
Montreal Neurological Institute (MNI) 152 space using 
AFNI (Analysis of Functional NeuroImages, afni.nimh.
nih.gov). DTI Images were corrected for head movement 
and eddy current induced geometric distortions using 
the procedure described in Leemans and Jones25 and 
corrected for EPI/susceptibility distortion26. Then the 
image was warped to an ‘undistorted’ T1-w modality, 
in the MNI-152 template using the ELASTIX approach27 
with non-rigid registration. The above steps were applied 
to the data obtained from each participant and done in 
one interpolation to reduce blurring effects, resulting in 
streamline files. The quality of each processing step (tensor 
estimation, T1-w transformation) was visually inspected. 
The valid co-registration was checked by overlaying the 
respective images for each participant.

Explore DTI provided the Mori standard labeled atlas 
in the same MNI 152 standard space (ICBM-DTI-8128,29). By 
warping the atlas template and transforming the associate 
labels to each individual data set, diffusion metrics were 
calculated in each of the atlas areas. A total of 48 white 
matter areas were identified excluding brainstem and 
cerebellar regions. Global areas are: Middle cerebellar 
peduncle, Pontine crossing tract, Genu, Body and Splenium 
of corpus callosum, Fornix (column and body of fornix). 
Bilateral regions included following atlas labels from 
both hemispheres: Corticospinal tract, Medial lemniscus, 
Inferior and Superior cerebellar peduncle, Cerebral 
peduncle, Anterior limb of the internal capsule, Posterior 
limb of the internal capsule, Retrolenticular part of the 
internal capsule, Anterior, Superior  and Posterior corona 
radiata, Posterior thalamic radiation, Sagittal stratum, 
External capsule, Cingulum (cingulate gyrus), Cingulum 
(hippocampus), Fornix (cres) Stria terminalis, Superior 
longitudinal fasciculus, Superior fronto-occipital fasciculus, 
Uncinate fasciculus, and Tapetum.  

DTI measures

For each brain region in the white matter atlas, the 
following metrics were obtained.

Fractional anisotropy (FA):

 
    (1) 
 
 
        where is the mean of the 
eigenvalues of the diffusion tensor.

Mean diffusivity (MD):

                (2)

Axial Diffusivity (AD):

                                                           (3)

Radial Diffusivity (RD):

                               (4)

We also computed an anisotropy measure ( ) to 
capture the deviation from the spherical case, as follows. 
First, we sorted the eigenvalues of the diffusion vector such 
that and then computed 

  
                                                                                               
(5)

Data analysis 
For each brain, 48 white matter ROIs x 5 measures 

(FA, MD, AD, RD, ) = 240 values were available, for a 
total of 63 brains x 240 values/brain = 15120 data values; 
namely, 3024 values per measure above.  Standard 
statistical methods were used to analyze the data, 
including descriptive statistics (mean, SEM) and partial 
correlations. The two conditions of data acquisition were 
coded as a binary variable (8 channel head coil = 0; 15 
channel head coil = 1) and used as a controlled variable 
(with age) in calculating the partial correlation between 
CRP and DTI measure.   All statistical analyses were done 
using the IBM-SPSS statistical package (versions 23 and 
26).

Results

Descriptive statistics
Age. The frequency distribution of age is shown in 

Figure 1; the mean ± SEM age was 55.2 ± 1.12 y.

Figure 1. Frequency distribution of the age of the participants (N = 
63).
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BMI. The frequency distribution of BMI is shown in Figure 
2. The mean ± SEM BMI was 31.3 ± 0.64 kg/m2 (N = 63).

CRP. The frequency distribution of CRP values (mg/
dl) is shown in the left panel of Figure 3. It can be seen 
that it is skewed to the right, suggesting a logarithmic 
transformation. Indeed, a natural-log transformation made 
the distribution more symmetric (Fig. 3, right panel).

ln(CRP) = loge(CRP) = ln(CRP)           (6)

A detailed analysis of this distribution showed the absence of 
outliers. The mean ± SEM of ln(CRP) was 0.674 ± 0.122 (N = 63). 

FA (Figure 4). The mean ± SEM of FA were 0.436 ± 
0.0015674 (N = 3024). 

MD. The mean ± SEM of MD were 0.0009163 ± 
0.000005148 (N = 3024). 

AD. The mean ± SEM of AD were 0.001347 ± 
0.000006168 (N = 3024). 

Figure 2. Frequency distribution of the BMI of the participants (N 
= 63). 

Figure 3. Frequency distribution of the CRP of the participants (left panel) and its natural-log transformed values (right panel; N = 63). 
See text for details.

Figure 4. Frequency distribution of FA (N = 3024). See text for 
details.

RD. The mean ± SEM of RD were 0.0007007 ± 
0.000004848 (N = 3024). 

. The mean ± SEM of  were 0.5802 ± 0.0015272818 
(N = 3024). 

Association between age and DTI measures
Age was significantly associated with all DTI parameters 

and, therefore, was retained as a covariate in further 
analyses. The respective Pearson correlation coefficients 
were as follows; P values were Bonferroni-adjusted for 5 
multiple comparisons. N = 3014 for all.

 Age and FA.  r = −0.141 (P = 3.28 x 10−14).

 Age and MD.  r = 0.096 (P = 5.87 x 10−7).

 Age and AD.  r = 0.062 (P = 0.003).

 Age and RD.  r = 0.114 (P = 1.55 x 10−9).

 Age and .  r = −0.141 (P = 4.01 x 10−14).
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Association between BMI and DTI measures
BMI was not significantly associated with any DTI 

measure (P > 0.1 for all) and, therefore, was not retained as 
a covariate in further analyses.

Association between gender and DTI measures
Gender was not significantly associated with any DTI 

measure (P > 0.7 for all) and, therefore, was not retained as 
a covariate in further analyses.

Association between ln(CRP) and DTI measures
The association between ln(CRP) and DTI measures 

was evaluated by calculating the partial correlation 
between them, controlling for age. P values below for the 
ln(CRP) effect were Bonferroni-corrected for 5 multiple 
comparisons. ln(CRP) was significantly associated with all 
DTI parameters except for AD. The partial correlations  
(controlling for age) were as follows. N = 3024 for all.

 ln(CRP) and FA.   = −0.059 (P = 0.001).

ln(CRP) and MD.   = 0.057 (P = 0.002).

ln(CRP) and RD.   = 0.063 (P = 0.001).

ln(CRP) and .  = −0.058 (P = 0.001).

The same values of  were obtained when the binary 
variable coding for 8- and 15-channel coil acquisitions was 
added (with age) and a controlled variable. 

For visualization purposes, the relations above are 
illustrated in Figures. 5-8 as plots of age-adjusted DTI 
measures against binned ln(CRP) values with bin width = 1.

Discussion
Here we investigated the association of a peripheral 

marker of inflammation, C-reactive protein, with white 
matter anisotropy and diffusivity in veterans with GWI. 

Figure 5. Age-adjusted FA values (mean ± SEM) are plotted against 
binned ln(CRP); bin width = 1. See text for details.

Figure 6. Age-adjusted MD values (mean ± SEM) are plotted against 
binned ln(CRP); bin width = 1. See text for details.

 
Figure 7. Age-adjusted RD values (mean ± SEM) are plotted against 
binned ln(CRP); bin width = 1. See text for details.

Figure 8. Age-adjusted  values (mean ± SEM) are plotted against 
binned ln(CRP); bin width = 1. See text for details.
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Findings from the present study revealed highly significant 
associations between CRP and white matter alterations 
including decreased FA and Ca and increased RD and 
MD, but not AD, in Gulf War veterans. The results provide 
further evidence of brain anomalies associated with GWI 
and document an association of GWI-related brain effects 
and inflammation.

Previous studies have documented associations 
between peripheral inflammation and white matter 
alterations30,31. Here we extend that to GWI and show 
that most, but not all, DTI metrics we evaluated were 
associated with peripheral inflammation in GWI. This 
dissociation of findings is informative as the different 
DTI metrics reflect different processes. Indeed, the use 
of multiple DTI measures is recommended to optimally 
characterize white matter microstructure16. For instance, 
FA is a highly sensitive yet non-specific indicator of white 
matter microstructural changes, the nature of which can 
be clarified by considering other DTI metrics such as AD 
and RD. AD and RD are considered to be indicators of 
axonal degeneration and demyelination, respectively32. 
Here, we reported an association of inflammation and 
RD, but not AD, suggesting an effect of inflammation on 
demyelination, but not axonal degeneration, in GWI. That 
is not to say that axonal degeneration is not associated 
with GWI; in fact, prior studies have documented increased 
AD in GWI20,21. Rather, the AD effect does not appear to 
be associated with inflammation. On the other hand, 
demyelination and inflammation are intimately linked as 
exemplified most definitively by multiple sclerosis33. We 
previously demonstrated that magnetoencephalography-
based brain communication in GWI is indistinguishable 
from well-established immune-related disorders including 
relapsing-remitting multiple sclerosis, Sjogren’s syndrome, 
and rheumatoid arthritis, yet highly different from healthy 
controls and psychiatric disorders1. The current findings 
suggest that white matter alterations including myelin 
damage may contribute to the observed similarities in 
neural communication. To that end, autoantibodies to 
myelin proteins34 and oligodendrocyte impairment35 
have been implicated in GWI, further supporting a role of 
demyelination in GWI.   

Though the brain was historically considered immune-
privileged, substantial evidence suggests that CRP and 
other inflammatory molecules can access the brain 
through several routes and influence local inflammatory 
pathways36-38. The source of systemic inflammation in 
GWI is uncertain; however, evidence increasingly points to 
pathogen exposure in veterans lacking specific immunity 
against those pathogens in contributing to GWI39-45. We have 
speculated that lack of immunogenetic protection against 
pathogens results in their persistence, and consequently 
promotes inflammation, autoimmunity, and ultimately 

neural damage40,46. In vitro studies have identified specific 
pathogens circulating in serum of veterans with GWI 
that contribute to harmful effects on neural cell cultures; 
remarkably, those damaging effects are ameliorated with 
the concomitant addition of antibodies41-44, suggesting 
potential avenues for intervention in vivo. 

Limitations
There are two methodological limitations in this 

study. The first limitation concerns the low number of 
directions (N = 15) in DTI data acquisition. Although 
future studies with higher directional resolution should 
provide more precise DTI measurements, we believe that 
the associations between CRP and DTI measures observed 
here will hold.  The second limitation concerns the possible 
influence of white matter hyperintensities (WMHs) on 
DTI measures47,48. Although we did not quantify WMHs, 
their presence/absence was similar to that of the general 
population, as evaluated by reviewing the scans by Dr. 
Carpenter (coauthor of this paper and an expert in multiple 
sclerosis). As stated by Svärd et al.48, “if the purpose of 
a study is to compare alterations in NAWM between 
two groups using DTI it may be necessary to adjust the 
statistical analysis for WMH.” (abstract in ref.48)In this 
study, we did not compare two groups and, therefore, given 
the qualitative assessment of WHM presence above, we feel 
that our results regrading CRP are valid. Nevertheless, this 
issue remains to be investigated in future studies.
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