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ABSTRACT

Amyotrophic lateral sclerosis is a rare and fatal neurodegenerative disorder 
characterized by the progressive loss of motor neurons in the central nervous 
system and neuromuscular junctions in the periphery. The pathomechanism behind 
the disease, except from some familiar cases associated with genetic mutations, 
remains unclear, however, numerous mechanisms contributing to the disease have 
already been disclosed. The key components are the oxidative stress, excitotoxicity, 
mitochondrial dysfunctions and inflammatory processes. In addition, increased 
intracellular calcium, which is another identified pathological event, could merge 
these individual toxic mechanisms into a single, escalating and self-perpetuating 
cycle of neuronal degeneration. Our previous results suggest that calcium 
homeostasis might be preserved by modulating the transmembrane calcium flux 
with therapeutic compounds or via altering the calcium binding protein content 
to maintain an enhanced calcium buffer capacity. The scope of this commentary 
is to accentuate the reciprocal calcium dependence of the pathological events 
associated with amyotrophic lateral sclerosis and to discuss possible therapeutic 
strategies based on the restoration of calcium homeostasis.

Introduction
French neurologist, Jean Martin Charcot, was the first who defined 

amyotrophic lateral sclerosis (ALS) as „la sclérose latérale amiotrophique” 
which is a French expression for a pathological manifestation of the 
disease. Pioneering work of Professor Charcot was the autopsy report 
of the scar tissue in the anterolateral fasciculus of the spinal cord 
which manifested as spasticity and paralysis in the patients1. Nowadays 
amyotrophic lateral sclerosis is known as a non-cell autonomous2, 
multifactorial3 and multisystem disease4, however its exact origin 
and all the details of the development of the disorder, relentlessly 
leading to death, are still unclear. Several pathophysiological processes 
contributing to the progression of the disease have been disclosed in the 
last five decades, for instance genetic mutations in more than a dozen 
of genes5, excitotoxicity6, oxidative stress7, immune/inflammatory 
processes8, mitochondrial dysfunctions9 and disruption in calcium 
homeostasis10. Significance of calcium ions in different physiological 
and pathological conditions is a well-known phenomenon, since it has 
got a prominent biological property in reversible complex formations11 
and second messenger function. As a rule in biochemical reactions, a 
limited concentration range characterizes the optimal conditions of the 
calcium-mediated processes: either too low or too high concentration 
values are irreconcilable with life. At low concentration values, the vital 
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role of calcium was first demonstrated on isolated hearts12, 
reported by Sidney Ringer more than 130 years ago. At the 
other end of the concentration range, excess elevation in the 
intracellular calcium might lead to cell death13. Focusing on 
the state of the art concept of calcium mediated neuronal 
degeneration, in a recent manuscript, which appeared in 
the special issue of Biochemical and Biophysical Research 
Communications devoted to Neurodegeneration, we 
discussed the possible central role of the elevated calcium 
level in the pathomechanism of ALS14. In this commentary, 
we would like to corroborate that hypothesis with recent 
studies, furthermore, our neuroprotective trials and 
descriptive contribution to this special scientific field are 
also introduced.

Reciprocal calcium mediated processes in the 
pathomechanism of ALS

Involvement of elevated calcium concentration has 
been observed in chronic neurodegenerative diseases for 
instance in Alzheimer’s disease15, Parkinson’s disease16, 
Huntington’s disease17 and ALS18, furthermore, role of 
elevated calcium level was confirmed in acute neuronal 
lesions, as well19. Interestingly, most of the known factors 
of pathological processes are capable to interfere with 
the calcium homeostasis. Thus, although increased 
intracellular calcium might be located downstream within 
the complex pathomechanism of ALS, impaired calcium 
homeostasis is considered a final common pathway leading 
to injury of motor neurons through a calcium-dependent 
positive feedback loop. This is further supported by 
the recent observation that elevated calcium acts as 
a driver of transactive response DNA binding protein 
(TDP-43) mediated neuronal toxicity20, because TDP-43 
was identified as a main component of the cytoplasmic 
inclusions of the neurons in the majority of ALS patients21.

Excitotoxicity is a major pathological event in a wide 
variety of degeneration22, moreover, its crucial role in ALS 
was also supported by documenting a two-fold increase in 
the glutamate level in the sera23 and cerebrospinal fluid24 
of ALS patients. Molecular basis of this glutamate elevation 
might be based on a reduced number of excitatory amino 
acid transporter 2, since this receptor is responsible for 
a swift reuptake of glutamate25. In view of the fact that 
specific alterations in the subunit composition of the 
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 
(AMPA) glutamate receptors, namely, reduced number of 
the glutamate receptor 2 (GluR2) subunit was documented 
in ALS patients, which makes AMPA receptors permeable 
to calcium, the increased glutamate level may lead to an 
excess calcium influx and amplification of excitotoxicity26. 
Another well-characterized pathological pathway in ALS is 
a reactive oxygen species (ROS) mediated degeneration27, 
partially due to the gain of function mutation in the Cu/
Zn superoxide dismutase enzyme (SOD1) observed in a 

subset of the patients28. Importantly, elevated calcium may 
induce conformational change of wild type SOD1 which 
facilitates its amorphous aggregation29, thus contributes 
to the oxidative stress30. These data accentuate the role 
of calcium-mediated protein misfolding also in non-
SOD1, sporadic ALS31. ROS may change plasma membrane 
properties, target membrane embedded ion channels32, 
which may result in increased activity of P/Q type voltage 
gated calcium channels33, and a consequent increase 
of intracellular calcium. Increased cytosolic calcium 
may further elevate its intracellular level by impairing 
endoplasmic reticular calcium buffers34, furthermore, 
may augment mitochondrial ROS production35. Since 
the major victims are the motor neurons in ALS, when 
injured, they signal to neighboring microglia, the resident 
macrophages of the nervous system. This signal could 
be chemokine ligand 2 (CCL2)36, or other signaling 
molecules, yet to be identified. Microglia are equipped 
with the appropriate receptors and showed activation 
pattern in the same time frame as the expression of CCL2 
by motor neurons after axonal transection36. Microglial 
activation was directly visualized by [11C](R)-PK11195 
positron emission tomography in the central nervous 
system of ALS patients37. Activated microglia, by releasing 
peroxynitrite, may induce membrane perturbations of the 
neighboring cells, and are capable to inhibit the function 
of membrane proteins, like glutamate transporters38, 
contributing to elevated glutamate levels and excitotoxicity. 
Furthermore, they can trigger a phenotypic transformation 
of astrocytes39, thus mount a full-blown cellular immune 
response. Besides cellular immunity, recent observations 
suggest that humoral immunity has a crucial role in disease 
progression by documenting the presence of more than 
20 ALS specific antibodies in the sera of ALS patients40. 
ALS antibodies may also interact with L-type41, or N-/P-
/Q-type calcium channels42, as well, resulting in increased 
intracellular calcium in a motor neuron cell line43. The first 
direct evidence of increased calcium level paralleled with 
mitochondrial disruption in the pathology of ALS is based 
on electron microscopic observation of neuromuscular 
synapses in muscle biopsies obtained from ALS patients44. 
These findings got further support from transgenic animal 
model of ALS, based on SOD1 G93A mutation, where 
identical morphological changes and increased calcium 
could be observed not only in the motor axon terminals, but 
in the spinal motor neurons, as well45. These observations 
suggest, that while the pathomechanism is rather complex 
in ALS, calcium elevation may be a key component of the 
pathogenesis, thus neuroprotective trials should focus on 
this aspect of the disease.

Potential therapeutic possibilities based on the 
alleviation of calcium burden

Since sustained disruptions in the mechanism of 
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physiological calcium homeostasis trigger malicious 
changes in neuronal functions, furthermore, induce 
apoptotic and other death-related signaling pathways, 
stabilization of such ionic balance might be a promising 
therapeutic possibility. Hints for such approaches might 
be obtained from the observations that not all neuronal 
populations are equally susceptible during the disease, 
namely, the oculomotor and the Onufrowicz nucleus are 
considered to be resistant regions in ALS46. The different 
resistance of these cells might be based on their unique 
properties, such as cell size or axonal length, size of the 
motor unit, network connections, etc, or special calcium 
homeostasis. Besides the number and composition of the 
ion channels in their plasma membranes, another relevant 
factor in shaping cellular calcium homeostasis is related to 
their calcium buffer capacity. The main component of the 
calcium buffers in the cytosol is comprised of calcium binding 
proteins with EF-hand motifs47. Indeed, systematic studies 
of brain and spinal cord autopsy samples from ALS patients 
led to the conclusion that some of these proteins, such as 
calbindin-D28k or parvalbumin might be used as marker of 
resistant cell types48. Based on such observations, in vitro 
and in vivo studies showed that elevation of parvalbumin 
or calbindin-D28k level in vulnerable cells provide an 
enhanced resistance against calcium-mediated acute 
injury49,50,51. In a chronic motoneuron degeneration model, 
based on transgenic mutant SOD1 animals, by creating 
double transgenic mice with upregulated parvalbumin, 
significant neuroprotection could also be achieved, but 
the progression of the disease could not be stopped52. 
Also in the mSOD1 transgenic mouse strain, an alternative 
way to reduce calcium burden of motor neurons has been 
tried by applying AMPA receptor antagonist, talampanel53. 
During these experiments, calcium increase in spinal 
motor neurons of transgenic animals could be successfully 
prevented only if the treatment was started prior to the 
appearance of the symptoms of the disease53. Considering 
the universal role of calcium in the pathomechanism, the 
meager results of protective attempts in the chronic ALS 
models were unexpected. The reason behind the moderate 
success might be based on the fact, that calcium buffer 
capacity merely prolongs the proper homeostasis but 
loses its effectiveness due to the inevitable saturation of 
the buffer system. Furthermore, if the therapeutic attempt 
with AMPA receptor antagonists is started too late, the 
dialog between the glial cells and motor neurons might 
have switched from neuroprotective to neurotoxic mode8, 
which phase might be identified in the temporal trends of 
oxidation, respiration, and calcium regulation54.
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