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ABSTRACT

Pain and depression are two major health issues that we are currently facing. 
Chronic pain is the main reason that people seek medical care; and numerous 
people commit suicide each year because of depression. These two pathological 
conditions often coexist. Chronic pain patients are more likely to develop major 
depressive symptoms, while depressed patients reported more pain symptoms 
than normal healthy population. Understanding the common mechanisms 
associated with depression and pain is important for developing the effective 
strategy to treat this comorbidity. In this review, the potential mechanisms that 
contribute to both depression and pain are discussed from four perspectives, 
the morphological changes in the brain, monoamine deficiency, brain-derived 
neurotrophic factor (BDNF) reduction in the hippocampus, and the hypothalamic-
pituitary-adrenocortical (HPA) axis dysfunction. 

Introduction

Both chronic pain and major depression (MD) are important health 
issues. Pain is the leading reason that patients seek medical care.  
The annual cost pf pain (combining the health care cost and loss of 
productivity) in United States ranges from $560 to 635 billion, which 
is greater than the annual costs of heart disease, cancer, and diabetes1,2. 
Depression now is the leading cause of disability worldwide and is 
estimated to affect 350 million people3. These two conditions often 
coexist. The prevalence of pain in patients with MD and the prevalence 
of depression in chronic pain patients are higher than the prevalence of 
pain or depression in general population4. Moreover, the condition of 
one can exacerbate the other. Chronic pain patients with depression are 
more likely to have higher severity and longer duration of pain, and the 
presence of pain is associated with increased depressive symptoms and 
possible relapses4–7. The detailed epidemiological information about the 
comorbidity of pain and depression was reviewed by Bair et al., (2003). 
It is important to treat pain and depression concurrently in comorbid 
populations. By targeting the common mechanisms shared by both 
pain and depression, we can better treat these comorbid conditions. 
This review discusses the potential mechanisms that contribute to both 
depression and pain from four perspectives, the morphological changes 
in the brain, monoamine, brain-derived neurotrophic factor (BDNF), 
and the hypothalamic-pituitary-adrenocortical (HPA) axis dysfunction. 
The animal models for pain and depression are also briefly reviewed.
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Morphological changes in the brain

Morphological changes in depression
Brain imaging studies and post-mortem studies showed 

that patients with depression had abnormal morphology 
in many brain structures8. Grey matter reduction is one 
of the major reasons. Left anterior cingulate cortex (ACC), 
which is ventral to the corpus collosum and is also called 
subgenual prefrontal cortex (SGPFC), showed prominent 
grey matter reduction in depressed patients9.  Reduction 
of this area was found both in young women with early 
onset MD and middle aged women with recurrent MD10. 
The reduction in left posterior SGPFC is more prominent in 
MD patients compared with patients with other psychotic 
disorders, such as schizophrenia11. Decreased blood flow 
and activity in this area may contribute to the decrease in 
volume12. Hippocampus also exhibited volume reduction 
in depressed patients13,14. Reduction in hippocampus was 
seen in patients with a history of early-life adversity15,16 
and subjects with multiple depressive episodes17. Basal 
ganglia is another brain area showed grey matter reduction 
in depressed patients, more specifically the reduction was 
seen in putamen18,19 and caudate nuclei20,21. Besides grey 
matter reductions, white matter abnormalities have been 
observed in depressed patients22,23.

Morphological changes in pain
Chronic pain patients showed grey matter reduction in 

many brain areas. The most common areas that have grey 
matter decrease in chronic pain patients are the frontal 
cortex, ACC, insula, some areas in the temporal lobe24–30. 
Other areas, such as the thalamus, amygdala, motor cortex, 
and cerebellum, etc., also showed a decrease of grey matter 
depending on the type of chronic pain and disability the 
patients have31–33. The decreased grey matter was reversible 
in some cases after the pain was gone or was successfully 
treated28,30,34. Areas with increased grey matter were also 
noticed in some studies, such as the increased grey matter 
in the somatosensory cortex of migraine patients35, which 
is probably related to its crucial role of processing noxious 
and innocuous sensory information. 

Structural changes of brain areas involved in both 
depression and pain appears to be consequences of these 
pathological conditions instead of causes, because these 
changes were reversible once the depression36 or chronic 
pain28,30,34 has been treated. Overall, the brain areas that 
are mostly affected by both depression and pain are ACC, 
and the hippocampus in the temporal lobe. ACC is directly 
or indirectly connected to many other brain areas37, and is 
involved in the integration of emotion, cognition, autonomic 
function and conflict resolution38; these functions are 
disturbed during depression39. Additionally, ACC is 
highly involved in the affective component of pain40. The 

hippocampus in the temporal lobe is important in learning 
and memory, which are impaired in both depressed 
patients41 and some chronic pain patients42. Therefore, 
abnormality of ACC and hippocampus can contribute to the 
symptomology of both pain and depression.

Monoamine

Monoamine and depression
There are two major classes of antidepressants: the 

tricyclic antidepressants which block the plasma membrane 
transporter for serotonin (5-HT) and/or noradrenaline, 
and monoamine oxidase inhibitors which reduce the 
enzymatic breakdown of 5-HT and noradrenaline. Both 
categories increase the level of monoamine, which leads 
to the hypothesis that depression is caused by a deficiency 
of monoamines, such as noradrenaline, 5-HT, or both36,43. 
Therefore, based on this hypothesis, monoamine depletion 
was utilized to study the direct effects of monoamine 
on mood. However, conflicting results were found in 
heterogeneous populations. The monoamine depletions 
only had an effect in subjects with a family history of major 
depressive disorder (MDD) or in drug-free patients with 
MDD in remission, but did not decrease mood in healthy 
humans44. Additionally, it requires weeks of treatment 
with antidepressants to produce mood changes in clinical 
population, despite the relatively immediate increase of 
monoamine transmission after the administration of these 
drugs. Therefore, it was hypothesized that acute increase 
of monoamine induced by antidepressants produces 
secondary neuroplastic changes which takes longer time 
and alleviate depression43. In line with this hypothesis, 
studies have found antidepressants increased calpactin I 
light chain/annexin II (p11) which could increase serotonin 
1B receptor (5-HT1B)  receptors at the cell surface45 
and upregulate the transcription factor cAMP response 
element-binding protein (CREB)46.

Monoamine and pain
Monoamines play an important role in pain, especially 

in the descending inhibition of pain. The spinal cord is 
innervated by noradrenergic nuclei located in the brain 
stem47. The noradrenergic projections to the dorsal horn 
modulate nociceptive signals before their transmissions 
to higher centers. Both stimulation of locus coeruleus48 
and direct administration of noradrenaline to the spinal 
cord49,50 were antinociceptive. The release of noradrenaline 
acts predominantly on α2-adrenoceptor subclass and can 
inhibit transmitter release from primary afferent terminal 
and therefore suppress the activation of projection neurons 
in dorsal horn47. Serotonergic projections to the spinal cord 
mostly derives from rostral ventromedial medulla (RVM) 
and the dorsal raphe nucleus47. Both acute and chronic 
exposure to noxious stimuli can activate serotonergic 



Ling Li A, Peng YB.  J Neurol Neuromedicine (2017) 2(3): 4-11 Journal of Neurology & Neuromedicine

Page 6 of 11

neurons in the rostral ventromedial medulla (RVM) and 
facilitate the turnover of 5-HT in the spinal cord, therefore 
inhibit nociceptive transmission at the spinal cord51. 5-HT3 
receptors has been discovered to mediate the inhibitory 
effect of 5-HT on dorsal horn neurons upon periaqueductal 
grey (PAG) stimulation52.

Overall, monoamines are highly implicated in both pain 
and depression. The brain stem nuclei send descending 
projections to spinal cord to modulate pain transmission 
and ascending projections to different brain areas to 
modulate mood, cognition and physiological function. The 
disruption of serotonergic and noradrenergic systems can 
contribute to the comorbidity of pain and depression.

BDNF

BDNF and depression
BDNF is the most prevalent growth factor in the central 

nervous system. It is known to be involved in survival and 
synaptic plasticity of central and peripheral nervous system. 
In human, the BDNF was significantly lower in depressed 
patients without antidepressant than those who were 
treated or control group53; and the BDNF was increased by 
antidepressant therapies54 and electroconvulsive therapy55. 
Similar phenomena were seen in animals46,56. Furthermore, 
direct administration of BDNF in the hippocampus can 
produce an antidepressant-like effect in animals. A single 
bilateral infusion of BDNF into the dentate gyrus of the 
hippocampus produced an antidepressant effect which 
lasted for at least 10 days in both learned helplessness and 
forced swim test (FST) paradigms57. This antidepressive 
effect of BDNF was comparable in magnitude with repeated 
systemic administration of chemical antidepressant57.  
BDNF was able to promote the function and growth of 5-HT 
containing neurons and increase the turnover of 5-HT and 
levels of noradrenaline in many forebrain areas58. Given 
the important role of 5-HT and noradrenaline in treating 
depression, the effect of BDNF on serotonergic neuron and 
serotonin suggested a potential link between BDNF and 
depression.   

BNDF and Pain
Similar to depression, reduction of BDNF in the 

hippocampus was observed during pain59,60. But BDNF 
increased in spinal cord dorsal horn60,61 and periphery62,63 
under pain conditions. Spinal administration of BDNF 
resulted in decreased nociceptive threshold64 and 
allodynia61. The binding of BDNF to tropomyosin receptor 
kinase B (TrkB)  receptor is possibly involved in the 
pronocicptive effect of BDNF, because the sequestration 
of BDNF by TrkB receptor chimera protein suppressed 
nerve injury-induced thermal hyperalgesia and tactile 
allodynia61,65. In addition, BDNF induced phosphorylation 
of N-Methyl-D aspartic acid (NMDA) receptors on the 

spinal cord neurons, which is necessary for maintaining 
pain hypersensitivity after nerve injury66. 

Although the BDNF changes differently at different 
location under pain condition, both pain and depression 
had reduction of BDNF in the hippocampus. It is interesting 
that the induction of BDNF by intracerebroventricular 
injection of 4-methycatechol (4-MC) reduced both the 
pain and depression response in rats caused by chronic 
constriction injury (CCI) of sciatic nerve, and this effect 
was blocked by anti-BDNF antibody67. This implies that the 
enhancement of BDNF in the brain may be a new treatment 
strategy for chronic pain associated with depression.

Dysfunction of HPA axis in depression and pain

  The HPA axis is involved in the “flight or fight” response 
to stress. It consists of hypothalamus, pituitary and 
adrenal gland. External stressor activates hypothalamus 
to release corticotropin-releasing factor (CRF) which 
is delivered to and stimulate pituitary gland to release 
adrenocorticotropin hormone (ACTH). ACTH reaches 
adrenal gland through circulation and activate it to release 
glucocorticoids, such as cortisol which is involved in 
glucose metabolism68. Glucocorticoid, in turn, can suppress 
the production of CRH and ACTH to serve as the negative 
feedback mechanism for the HPA axis. Activation of the 
HPA axis is an adaptive process and enables organisms to 
respond to various challenges. However, continued and 
prolonged stress may disturb the HPA axis to such an extent 
that the negative feedback mechanism is disrupted; and the 
adaptive response of HPA axis then becomes maladaptive69.

Depression and HPA axis

Dexamethasone (DST) has been used to detect the 
HPA abnormalities in melancholic patients70–72. DST is an 
exogenous steroid that can suppress the ACTH release by 
binding to the glucocorticoid receptors (GR) in the anterior 
pituitary gland. Depressed patients did not show such 
inhibition of HPA axis by DST, and some patients showed 
hypersecretion of cortisol at baseline70,72. Interestingly, not 
everyone who undergoes trauma develops abnormal HPA 
activity, only those who actually develop depression73. 

This loss of inhibition of HPA axis or maladaptive of HPA 
negative feedback mechanism has been attributed to the 
glucocorticoid receptors (GRs) which play an important 
role in the negative feedback regulation of the HPA axis. 
Patients with bipolar or major depressive disorders, as 
well as first-degree relatives of those patients, displayed 
GRα mRNA reduction74, which indicates the genetic 
involvement. Genetic manipulation of GR expression in 
mice made animals more prone to develop depression-
like behavior by under-expressing GR or more resistant 
to depression by over-expressing GR75. Antidepressants 
can also modify GR mRNA concentrations in primary 
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culture of rat hypothalamic or cortical neurons76, elevate 
GR concentration in hypothalamus77, and reduce basal, as 
well as stress-induced plasma ACTH and corticosterone77. 
Therefore, antidepressant may alleviate depression 
through increasing the number of the corticosteroid 
receptors and restore susceptibility of HPA axis to negative 
feedback by cortisol78. It is true that drugs specifically 
targeting HPA axis have shown promise in ameliorating 
depression symptoms69.

Pain and HPA axis

Unlike the depression for which the hypercortisolism is 
a common phenomenon, hypocortisolism is more common 
in chronic pain patients79–81. No escape from DST was 
observed in fibromyalgia (FMS) patients81. However, not all 
pain patients are associated with low cortisol level. Women 
with shoulder and neck pain had a tendency to develop 
higher elevated cortisol levels, and this hypercortisolism 
was suggested to represent an intermediate stage towards 
the development of a hypocortisolism in wide spread 
musculoskeletal pain80. 

In summary, both pain patients and depressed patients 
showed maladaptive HPA function. However, depressed 
pain patients are more likely to develop hyperacitivity of 
HPA axis and result in hypercortisolism, while pain patients 
develop hypocortisolism. 

Animal models for depression and pain

Animal models are great surrogates to study human 
disease in basic and preclinical research. They are pivotal 
for understanding the underlying pathophysiological 
mechanisms of disease and development of effective 
therapy. Therefore, the animal models of depression 
and pain are briefly summarized in this section to better 
understand how the animal models can be used to 
study the comorbidity of depression and pain (for more 
comprehensive and thorough reviews of depression 
models see82–84, and pain models see85–87).

Some depression models are used to screen for the 
efficacy of antidepressants. These tests are easy, low-cost, 
and highly reproducible; such as FST and tail suspension 
test (TST), in which animal is forced to swim in a confined 
space or is suspended by its tail respectively82–84. In these 
tests, animal becomes immobile after the initial struggle. 
The total immobility time is sensitive to anti-depressive 
treatment. Some other depression models incorporate 
stress as the major determinant.  Learned helplessness 
introduces the uncontrollable and unpredictable stress, and 
results in the loss of motivation to escape in animals82–84,88. 
For example, a rat is placed in a chamber divided into two 
halves, with one of them is equipped with the floor which 
can deliver electric shock. Animal learns to escape to the 
safe side when hears a warning tone preceding the shock. 

However, if the animal is confined to the side with shock 
and receives several unavoidable and uncontrolled shocks, 
animal will subsequently fail to escape when he is allowed 
to84. In the chronic mild stress (CMS) model, animals are 
exposed to a series of mild and unpredictable stressors for 
at least 2 weeks, such as isolation or crowded housing, food 
or water deprivation, disruption of dark-light cycle, tilted 
home cages, dampened bedding, etc82–84. And sucrose intake 
is used as readout of anhedonia in this model. Additionally, 
social stress is adopted in depression models by introducing 
an intruder to the stable social group or mixing different 
social groups; and maternal separation is used as an early 
life stressor. Furthermore, there are depression models 
based on the putative pathophysiological mechanism, such 
as the deficiency of monoamine. Reserpine, a vesicular 
monoamine transporter blocker, has been used to deplete 
synaptic monoamines in depression models82–84.  Others 
employ genetic manipulation to create mutant lines that 
display depressive symptoms82,83. 

Animal pain models have been created in an attempt 
to recapitulate clinical conditions. To create inflammatory 
pain, irritant inflammatory agents are injected into 
different parts of the body, such as cutaneous and 
subcutaneous tissue, joint, and muscle, etc89. For example, 
formalin can be injected subcutaneously in the hind paw 
of rodents to induce biphasic pain responses. The initial 
phase lasts about 5 min after the injection, and then after 
quiescent period, a second phase persists for about 45 
min. The spontaneous pain behaviors, such as flinching, 
shaking, or jerking of the injected paw, are quantified to 
indicate the present pain induced by formalin85,89. Other 
commonly used irritant algogenic agents are capsaicin, 
Freund’s adjuvant, and carrageenan, etc. When these 
agents are injected intraperitoneally or directly into the 
hollow organs, such as colon, visceral pain is produced 
and writhing response can be measured85. Another major 
type of pain is the neuropathic pain which results from 
the injury or dysfunction of the nervous system. Many 
surgical variations have been invented to injure the 
nerve. For example, there are complete transection of 
the sciatic nerve, tight ligation of dorsal one third to half 
of the common sciatic nerve, tight ligation of L5 spinal 
nerve, tight ligation of peroneal and tibial nerve while 
leaving sural nerve intact, or spinal cord contusion, etc86,87.  
Inflammatory agent, such as zymosan, can also be applied 
to the nerve to induce neuropathic pain86. Additionally, 
chemotherapy-induced neuropathic pain is commonly 
seen in patients who receive chemotherapeutic drugs. 
Therefore, chemotherapeutic agents, such as vincristine, 
cisplatin and paclitaxel, have been repeatedly injected to 
animals to produce chemotherapy-induced peripheral 
neuropathy.  Other disease-induced neuropathy models are 
diabetes- and cancer-induced neuropathy86. Many of the 
pain models can result in the peripheral hypersensitivity 
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which can be measured by the reduced threshold to thermal 
or mechanical stimuli. To measure the hypersensitivity 
to mechanical stimuli, a pressure of increasing intensity 
is applied to the hind paw until the paw withdrawal. 
For example, a series of von Frey filaments of different 
diameters (producing different pressure when bent) are 
applied to the ventral or dorsal surface of the hind paw. 
The lowest pressure that produces withdrawal response is 
regarded as the mechanical threshold. Similarly, the thermal 
hypersensitivity can be measured by the reaction time 
of certain behavior when exposed to a thermal stimulus. 
An example of such test is the Hargreaves test in which a 
radiant heat is directed toward the plantar surface of the 
hind paw and the latency of paw withdrawal is recorded 
as the thermal threshold90. Sometimes, animal’s response 
to cold is also measured. Vocalization is another parameter 
that is measured as the reaction to painful stimuli, and the 
stimulus intensity necessary to elicit a vocal response is 
determined85,89. 

To study the comorbidity of depression and pain 
in animal models, it is necessary to evaluate the pain 
hypersensitivity in depression models and depressive 
proneness in pain models, and find the optimal model for 
the comorbidity of depression and pain. It can imagine 
that not every model will produce the same degree of 
comorbidity based on the differences in the etiologies and 
pathophysiological mechanisms for each model. Because 
the comorbidity was mostly seen in patients with chronic 
pain, it is more appropriate to incorporate chronic pain 
such as neuropathic pain, as opposed to the relatively 
transient pain such as formalin injection-induced pain.  
Furthermore, depression models with higher face validity 
involving stress as major determinant can better mimic 
clinical conditions as compared to the FST or TST.

Summary
As discussed above, there are common factors involved 

in both depression and pain: the grey matter decrease 
in ACC and hippocampus, deficiency in monoamine 
and reduction of BDNF in hippocampus. Although both 
depression and pain are associated with the malfunction 
of HPA axis, they differ in the direction of changes in HPA 
axis activity.  Targeting at these shared mechanisms for 
pain and depression may increase the efficiency of treating 
patients with comorbidity of pain and depression. More 
research needs to be done in a comorbidity model to study 
the efficacy of targeting these factors in treating pain and 
depression. For example, does the increase of monoamine 
or BDNF level ameliorate both pain and depression? There 
is one study which has shown increased BDNF can increase 
pain threshold and alleviate depression in CCI model67, but 
more research needs to be done. Studies have shown that 
increased glucocorticoids and ACTH was able to increase 
monoamine oxidase activity to reduce monoamine 

level91,92. Decreased BDNF level could lead to changes of 
neuroplasticity and volume in critical brain areas46, such 
as the prefrontal cortex, ACC and hippocampus, which 
can result in the dis-regulation of mood and changed pain 
perception. Therefore, we also want to know how these 
mechanisms interact with each other and how they play as 
a whole in the comorbidity of depression and pain.
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