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ABSTRACT

Alzheimer’s disease (AD) is characterized by neuronal death with an 
accumulation of intra-cellular neurofibrillary tangles (NFT) and extracellular 
amyloid plaques. Reduced DNA repair ability has been reported in AD brains. 
In neurons, the predominant mechanism to repair double-strand DNA breaks 
(DSB) is non-homologous end joining (NHEJ) that requires DNA-dependent 
protein kinase (DNA-PK) activity. DNA-PK is a holoenzyme comprising the p460 
kD DNA-PK catalytic subunit (DNA-PKcs) and its activator Ku, a heterodimer 
of p86 (Ku80) and p70 (Ku70) subunits. Upon binding to double-stranded 
DNA ends, Ku recruits DNA-PKcs to process NHEJ. In AD brains, reduced NHEJ 
activity as well as DNA-PKcs and Ku protein levels have been shown. Normal 
aging brains also show a reduction in both DNA-PKcs and Ku levels questioning 
a direct link between NHEJ ability and AD, and suggesting additional players/
events in AD pathogenesis. Deficiency of Ku80, a somatostatin receptor, can 
disrupt somatostatin signaling thus inducing amyloid beta (Aβ) generation, 
which in turn can potentiate DNA-PKcs degradation and consequently loss of 
NHEJ activity, an additional step negatively affecting DSB repair. Trigger of these 
two different pathways culminating in genome instability may differentiate the 
outcomes between AD and normal aging. 
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Alzheimer’s Disease Alzheimer’s disease (AD) is a CNS neurodegenerative disease, 

characterized by specific neuronal death with accumulated 
neurofibrillary tangles (NFT) and extracellular amyloid beta 
(Aβ) deposits1.  Aβ directly injures neocortical and limbic system 
neurons2. It also indirectly activates the microglia that release pro-
inflammatory cytokines and reactive oxygen species (ROS), both 
events being neurotoxic3,4. Other factors linked to the development 
of AD include apolipoprotein E genotype5; hyperphosphorylation 
of cytoskeletal proteins (neurofilaments and Tau)6, and  Aβ 
metabolism7. As diverse as the pathological and biochemical 
presentations of AD are8, no single factor has been confirmed as 
the sole cause of this complex disease9-12. Studies have shown a 
link between oxidative stress (e.g., ROS) and AD pathogenesis11,13,14. 
Since oxidative stress can cause DNA lesions, changes in the levels 
and activity of DNA-repair proteins have garnered special interest of 
study of AD patients or patients with mild cognitive impairment15,16.

Cellular damage by oxidative stress caused by the generation 
of ROS has been implicated in pathophysiology of AD as well as 
normal aging and elevated levels of oxidative damage in DNA, both 
nuclear and mitochondrial, have been observed in AD brains17. As 
DNA damage accumulates and DNA repair process lags or goes awry, 
a potentially adverse scenario can set in contributing to AD18,19. 
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Some human hereditary genetic defects in the DNA repair 
system also manifest in early onset of developmental and 
progressive neurodegeneration20,21. Cells use several types 
of DNA repair systems such as base excision repair (BER), 
nucleotide excision repair (NER), single strand break 
repair (SSBR), and double strand break repair (DSBR). 
Of all these various DNA damages, double strand break 
(DSB) happens to be the most lethal. There are two major 
DSB repair pathways in the eukaryotes; non-homologous 
end joining (NHEJ) and homologous recombination (HR). 
NHEJ, the predominant pathway for DSBR in higher order 
organisms, functions throughout the cell cycle22-24, whereas 
HR functions are confined to the S and G2 stages of the cell 
cycle25. DNA-PK plays an essential role in accessing the 
DNA ends during NHEJ26,27. 

As a response to DNA damage, expression and activity of 
many kinases including members of the PI3 kinase family 
are altered28. One of these kinases, the DNA-dependent 
protein kinase (DNA-PK) preferentially phosphorylates 
the serines (S) and threonines (T) of its targets although it 
can also phosphorylate other S-T/hydrophobic residues29. 
DNA-PK holoenzyme consists of a catalytic subunit 
(DNA-PKcs), p460 and a regulatory subunit (Ku). The Ku 
protein is a heterodimer composed of 70 kD (Ku70) and 
80 kD (Ku80) subunits; and possesses the ability to bind 
to DNA ends30,31. DNA-PK is conserved across species32,33  
and participates in transcription, DNA recombination 
and repair34-38. In the absence of DNA-PKcs, Ku binds DNA 
ends in a sequence-independent manner39, however, Ku 
is required for targeting DNA-PKcs to damaged DNA ends 
in physiologic conditions in vitro and in living cells40. 
DSB can activate DNA-PK both in trans (occurs via kinase 
autophosphrylation) or cis (occurs via specific DNA strand 
orientation and sequence bias) modes41-43.

Post-mitotic neurons are mature, do not proliferate44,45 
and are also one of the most metabolically and 
transcriptionally active cells (review46). Therefore, these 
neurons are more susceptible to suffer from risks involving 
DNA damage. NHEJ, unlike HR, is error-prone since it acts 
at the DNA break points and the repair process can cause 
loss of one or more nucleotides. However, since most of the 
higher eukaryote genome is non-coding, errors occurred 
during DSBR by NHEJ rarely translate into any deleterious 
effects. Unfortunately, as people age, accumulation of 
these non-obvious errors eventually can lead to genome 
instability, thereby causing cellular death or dysfunction. 
For example, 10% of p53 mutations in human cancers 
could be attributed to deletions arising from NHEJ sites47. 
NHEJ being the predominant form of DSBR pathway in post-
mitotic neurons48, mouse neurons deficient in components 
of NHEJ, such as XLF, DNA Ligase IV, XRCC4, Ku70 and Ku80 
(Figure 1), undergo excessive apoptosis49,50. Mice with 
defective NHEJ show accelerated aging51,52. Loss of NHEJ 

activity in the developing brain causes prenatal lethality 
and can lead to neurodegenerative diseases in adults49,53,54.

Terminally differentiated post-mitotic neurons 
triggered to re-enter cell cycle following stimuli 
associated with DNA damage and oxidative stress undergo 
apoptosis55,56. Neuronal DNA damage is linked to neurons 
re-entering cell cycle56,57. To this end, DNA replication 
may be a consequence of cell cycle re-entry preceding 
neurodegeneration in AD brains58. Moreover, reactive 
oxygen/nitrogen species reportedly cause deregulated and 
inefficient DNA replication known as ‘replication stress’59. 
It is possible that “replication stress” in AD pathogenesis 
can lead to genomic instability potentially resulting in 
Aβ accumulation and deregulated cell cycles60. Adding to 
this scenario, existence of defective DNA repair systems 
in post-mitotic neurons would lead to accumulation of 
further DNA damages and genomic instabilities61,62 (Figure 
1). It has been suggested that accumulated single-stranded 
DNA (ssDNA) at replication forks may give rise to aberrant 
DNA structures resulting in DSBs that activate DNA-PK63. 
With this scenario, in AD, reduced DNA-PK as such would 
further enhance DSB accumulation. Intracellular increase 
in DNA content observed in AD brains58,64 may also result 
from these combined events. Indeed, it has been reported 
that DNA-PKcs mutant cells under stress fail to arrest 
replication65. Thus, neurons deficient in DNA-PK activity 
could uninterruptedly undergo replication stress ending 
with genome instability (Figure 1). 

DNA-PK plays a critical role, first, by sensing DNA 
damage and then, inducing signaling pathways including 
programmed cell death51.  Ku80-/- mice are defective in NHEJ, 
telomere maintenance and show premature aging52,66. Ku80 
and DNA-PKcs protein levels as well as Ku80’s DNA-binding 
ability are reduced following severe ischemic injury leading 
to neuronal death in rabbit67. Furthermore, although not 
significantly different from the age-matched controls, Ku-
DNA binding is reduced in extracts of post-mortem AD 
mid-frontal cortex that may be linked to reduced levels 
of Ku and DNA-PKcs proteins68. Reduced NHEJ activity 
in extracts of the cortices of AD brains compared to the 
normal subjects and significantly lower levels of DNA-PKcs 
in the AD brain extracts have also been reported69. Since 
DNA-PK is a critical player in cell survival/death and gene 
transcription, it is tempting to directly link reduced levels 
of DNA-PK subunits to less proficient NHEJ in AD brains 
and neurodegeneration. It is likely that DNA damage (e.g., 
induced by ROS) in neurons that are already challenged 
with reduced NHEJ activity, may trigger them to re-enter 
cell cycle albeit unsuccessfully, resulting in accumulation 
of excessive genomic damage leading to neuronal death. 
Therefore, reduced levels of DNA-PKcs and Ku80/Ku70 
subunits in post-mortem AD brains may be an important 
upstream event that predisposes the neurons to AD.
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In NGF-differentiated PC12 cells, sub-lethal levels of 
aggregated Aβ25-35 have been shown to inhibit DNA-PK 
activity as does hydrogen peroxide70. One of its potential 
mechanisms may be Aβ-induced ROS-mediated DNA-PKcs 
degradation via carbonylation, an irreversible oxidative 
protein modification71,72. A decrease in DNA-PKcs expression 
in neurons and astrocytes of AD brains73, although not 
significant compared to age-matched controls, has been 
reported74. Whether Aβ-induced attenuation of DNA-PK 
activity and reduced NHEJ activity (Figure 1) leading to 
neurotoxicity is linked to the development of AD awaits 
careful scrutiny. 

Ku80 has been shown to be a specific receptor for 
somatostatin75 and can regulate DNA-PK activity through 

somatostatin signaling pathways76. Somatostatin modulates 
both motor activity and cognition77. Somatostatinergic 
neurons exist in the CNS including the cerebral cortex, 
hippocampus, hypothalamus, and spinal cord78. Along 
with various other neuropeptides, somatostatin levels 
are significantly reduced in AD brains79 and cerebrospinal 
fluid80. Somatostatin receptors are also reduced in the 
cortical areas of the AD brain81. Loss of somatostatinergic 
neurons along with reduction in somatostatin transcripts 
in a transgenic mouse model of AD, and somatostatin 
deficiency potentially triggering Aβ generation have 
been reported82. It is possible that Ku80 deficiency can 
negatively affect somatostatin signaling leading to Aβ 
generation, thereby contributing to AD pathogenesis, a 
process independent of the involvement of DSB (Figure 1).

Figure 1: Schematic presentation of a potential link of DSB, DNA-PK and Aβ in AD brains.  Upon induction of DSB either by normal aging/
ROS or other DNA damaging agents, Ku80/Ku70 and DNA-PKcs are rapidly recruited to DNA ends, and DNA repair occurs as it would in 
normal cases.  However, in AD brains, in addition to formation of Aβ oligomers from Aβ peptides, sustained DSB in the genome would 
cause genome instability leading to the loss of normal neuronal activity.  Additionally, with depleted Ku80, a somatostatin receptor, 
disruption of somatostatin signaling could potentially induce Aβ generation thus accelerating AD pathology.  
DSB: DNA double strand break;  DNA-PK: DNA-dependent protein kinase; ROS: Reactive oxygen species; Aβ Amyloid beta
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 DNA-PKcs, Ku80 and Ku70 are exceptionally abundant 
proteins in human cells83. Reduced level of DNA-PKcs in 
AD brains has been attributed to Aβ-induced proteasome-
mediated degradation of DNA-PKcs

71,72. Whether disruption 
of the somatostatin signaling due to Ku80 deficiency 
inducing Aβ generation precedes DNA-PKcs degradation is 
not known. If true, it would highlight Ku80 as a dual player 
in AD pathogenesis; when deficient, by indirectly promoting 
Aβ generation and directly causing NHEJ deficiency.   
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