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ABSTRACT

Serotonin neurons originate from the brainstem raphe nuclei and innervate 
the entire brain to regulate mood, emotion, sleep, appetite and aggression. 
Previous electron microscopy (EM) studies have revealed that 5-HT boutons 
directly contact several neuronal populations via asymmetrical (excitatory) 
or symmetrical (inhibitory) synapses. Additionally, 5-HT boutons sometimes 
form “triads” with the pre and postsynaptic components of asymmetrical 
or symmetrical synapses to modulate their activity. However, the exact 
proportion and distribution of 5-HT excitatory/inhibitory synapses and triads 
within the entire brain remains poorly described. Recently, we have published 
a novel semi-quantitative approach which combines fluorescent confocal 
microscopy and 3D reconstruction of 5-HT fibers apposed to excitatory and 
inhibitory neurochemical synapses (triads). Here, we review the similarities 
and differences in the distribution of 5-HT asymmetrical/symmetrical synapses 
observed in EM and the distribution of 5-HT excitatory/inhibitory triads 
quantified in our recent study. We further put into perspective the possible 
physiological role played by 5-HT triads in the regulation of glutamate and 
GABA signaling in these various brain regions.
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Introduction
Serotonin (5-Hydroxytriptamine, 5-HT) neurons have been 

extensively involved in the regulation of mood1, sleep2, learning3, 
memory4, cognition5 and impulsivity6. As such, the functional 
connectivity of 5-HT neurons within the brain is complex and 
remains poorly understood. Pioneer work from electron microscopy 
(EM) studies have unraveled the heterogeneous connectivity of 
5-HT neurons throughout the rodent brain, revealing that 5-HT
neurons send axons to almost all brain regions and modulate
various populations of neurons by synaptic contacts that are either
asymmetrical (excitatory) or symmetrical (inhibitory)7. Similarly,
some of these electron microscopy studies have also allowed the
observation of 5-HT-containing boutons that synapse to the pre or the 
postsynaptic components of asymmetrical or symmetrical synapses
to form “triads”. These triads have been observed in the cortex8,
the nucleus accumbens9, the hippocampus10, the amygdala11, the
VTA12 and the striatum7. However, the complex and time consuming
processing/serial sectioning of samples required for high-quality
EM have not allowed the aforementioned studies to quantify these
triads in the corresponding brain regions.

Therefore, we have recently developed a semi-quantitative 
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method combining high-resolution confocal microscopy 
and 3D reconstruction of 5-HT transporter SERT-positive 
axons to map the distribution of 5-HT boutons apposed 
to either excitatory or inhibitory neurochemical synapses 
in the mouse limbic brain13. Briefly, we labeled serotonin 
transporter (SERT) immunoreactive axons and reconstruct 
in 3D their distribution within limbic brain regions. We 
also labelled key pre- (synaptophysin) and postsynaptic 
components of excitatory (PSD95) or inhibitory (gephyrin) 
synapses. Using the masking function in IMARIS software, 
we were able to isolate the synaptophysin punctate 
labelling inside the SERT-positive fibers (SYNin) to identify 
5-HT boutons. In parallel, we used the same masking
function to isolate the synaptophysin puncta outside SERT
fibers (SYNout) and their engagement into excitatory
(SYNout/PSD95 spot pairs) or inhibitory (SYNout/GEPH
spot pairs) neurochemical synapses. Finally, we quantified
the density of 5-HT boutons forming “triads” with either
excitatory or inhibitory neurochemical synapses in various
limbic regions of the mouse brain13.

Importantly, the distribution of excitatory vs inhibitory 
triads in our study was quite similar to the distribution 
of direct asymmetrical (excitatory) vs symmetrical 
(inhibitory) synapses made by 5-HT boutons, as observed 
in previous electron microscopy studies. This suggests 
that the excitatory/inhibitory balance of 5-HT axon 
connectivity is a common structural feature shared by both 
5-HTergic direct synapses and synaptic triads in the rodent 
brain. Here, we review the similarities and differences in
the distribution of 5-HT synapses and triads throughout
various brain regions where serotonin is known to play
an important regulatory role, with an emphasis on the
physiological significance previously demonstrated in
functional studies.

Cortex
Previous electron microscopy studies in rat motor, 

visual and somatosensory cortices8 found that only 20-
40% of 5-HT-immunolabelled varicosities (boutons) 
were involved in synaptic contacts. These contacts were 
essentially asymmetric on dendritic spines and branches. 
Similar results were observed in rat frontoparietal cortex 
using Tryptophan hydroxylase (TPH) immunolabelling14 
or in the prefrontal cortex using SERT immunolabelling15. 
In the prefrontal cortex of monkeys, only 23% of labelled 
5-HT boutons were engaged in synaptic contacts, mostly
asymmetrical and formed on dendritic shafts16. However,
in the auditory and sensorimotor cortices of cats and
monkeys, respectively, a relatively low synaptic incidence
(2-3%) was demonstrated, but again synaptic contacts were 
all asymmetrical17,18. Additionally, in the upper layers of
various cortical regions, 5-HT terminals were often apposed 
to non-5-HT axons engaged in asymmetrical synapses in a
triadic formation8. This suggests a potential role of cortical

5-HT in the regulation of neurotransmitter release. In line
with this, we showed that 5-HT boutons essentially form
synaptic triads with excitatory synapses in the upper layer
of the mouse prefrontal cortex and were located closer to
the presynaptic than the postsynaptic specializations, also
suggesting a role of 5-HT in the regulation of excitatory
neurotransmitter (glutamate) release13. The potential role
of 5-HT in the regulation of excitatory transmission has
been demonstrated in electrophysiology studies showing a
5-HT-mediated increase in glutamate release and amplitude 
of glutamatergic EPSCs at the apical dendrites of pyramidal 
neurons19. Blockade of 5-HT receptors (5-HT2A) was also
shown to prevent local glutamate release in the medial
prefrontal cortex (mPFC) in response to NMDA glutamate
receptor antagonist20.

Hippocampus

In the rat stratum oriens layer of CA3, a region 
known to have the highest density of 5-HT fibers in the 
hippocampus21, about 20% of immunolabelled 5-HT 
boutons were involved in synaptic contacts, with a greater 
proportion of asymmetrical synapses, only on dendritic 
shafts. We found that 5-HT boutons form almost twice 
as much triadic contacts with excitatory than inhibitory 
neurochemical synapses in the CA3 region of the mouse 
hippocampus, suggesting that 5-HT signaling is more 
involved in the regulation of excitatory transmission in this 
brain region. Similarly, strong evidence has suggested a 
preferential involvement of 5-HT in the negative regulation 
of glutamate signaling in other hippocampal regions 
including CA1 and CA222–26. This was further shown to 
play an important role in the regulation of long term 
potentiation (LTP)27,28. However, functional studies in the 
CA3 region have demonstrated that 5-HT both exerts a 
direct positive modulation of glutamate receptors29 and 
depress the GABAB receptor component of GABA-mediated 
IPSPs30–32, suggesting a 5-HT-mediated regulation of 
inhibitory synapses as well.

Nucleus Accumbens - NAC
In the NAC core and shell, 5-HT labelled boutons were 

shown to have a relatively high synaptic incidence (39 and 
46%, respectively9) as compared to other brain regions. The 
great majority of these 5-HT boutons were in apposition 
with terminals that often form asymmetric contacts with 
dendrites, suggesting that 5-HT boutons likely modulate 
the activity of excitatory axons9. We also found a higher 
proportion of triadic contacts with excitatory synapses 
(21%) compared to inhibitory synapses (3%) in the 
NAC core. This result suggests that 5-HT signaling may 
preferentially modulate the activity of excitatory synapses 
in this brain region. However, in the NAC shell, we observed 
an equal distribution of 5-HT triads onto neurochemical 
excitatory and inhibitory synapses. The NAC shell was 
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previously shown to be innervated by two functionally 
different types of 5-HTergic axons that either contain 
or lack the serotonin transporter SERT33. Therefore, our 
method of labeling 5-HT fibers with an antibody directed 
against the SERT may have revealed a specific subtype 
of 5-HTergic axons that is equally engaged in triads with 
excitatory and inhibitory synapses. Similar differences 
have been observed in electron microcopy studies where 
the use of a 5-HT antibody allows for the labelling of 5-HT 
boutons forming mostly asymmetrical synapses9, whereas 
the use of a SERT antibody allowed for the labelling of 
5-HT boutons forming both symmetrical and asymmetrical 
synapses in the rat NAC shell34. Interestingly, we found a
significantly higher proportion of 5-HT boutons located
closer to the presynaptic component of putative inhibitory
synapses within the NAC shell, suggesting that 5-HT could
have a modulatory effect on GABA release from GABAergic
synapses in this region. In addition, functional studies have 
also revealed a 5-HT-mediated control of glutamate release
in rat NAC core and shell slices via activation of presynaptic
5-HT1B receptors35, however, we did not observe any
preferential distribution of 5-HT boutons to the pre- or the
postsynaptic specialization of excitatory triads. Whether
5-HT modulates only glutamate release from presynaptic
terminals or also postsynaptic activity of glutamatergic
synapses in the NAC still needs to be determined.

Ventral Tegmental Area - VTA
Serotonin axons are abundant in the VTA, and it is likely 

that half of the EM-labelled 5-HT boutons are involved 
in synaptic contacts, almost exclusively on symmetrical 
(inhibitory) synapses, as evaluated by quantification 
extrapolated from a single thin section study in the rat brain36. 
Importantly, we found that the 5-HT triads were exclusively 

formed with inhibitory neurochemical synapses in our 
study, which suggests that 5-HT plays a pivotal role in the 
regulation of inhibitory transmission in the VTA. In line with 
these findings, limited evidence supports a role of 5-HT in the 
regulation of glutamate signaling in the VTA, while there is 
an extensive literature showing a 5-HT-mediated regulation 
of GABAergic neurotransmission. For instance, in rat VTA 
slices, 5-HT1B receptor activation was shown to inhibit GABA 
release37,38 as well as GABAB-mediated IPSCs39. Furthermore, 
the reduction in GABAB inhibitory postsynaptic potentials in 
dopamine neurons of rat VTA slices induced by cocaine was 
found to be mediated by 5-HT1B receptor39 which, in turn, 
facilitates cocaine-induced increases in dopamine levels in the 
NAC core40,41. This suggests that in the VTA, 5-HT signalling is 
principally involved in the control of inhibitory transmission.

Conclusion
Serotonin axon connectivity is highly heterogeneous 

along the rostro-caudal axis and, interestingly, the 
balanced distribution of asymmetrical/symmetrical 
synapses observed in electron microscopy studies follows 
a pattern similar to the distribution of 5-HT excitatory/
inhibitory triads in our recent study (Figure 1). Although 
asymmetrical and symmetrical synapses have been shown 
to express PSD9542 and gephyrin43 respectively, there is so 
far no evidence that 5-HT asymmetrical or symmetrical 
synapses are excitatory or inhibitory, or whether 5-HT 
postsynaptic specializations express PSD95 or gephyrin. 
Further studies are therefore needed to identify 
specific markers of 5-HT synapses and provide a more 
comprehensive understanding of 5-HT axon connectivity. 

*The authors declare that there is no conflict of interest.

Figure 1: Distribution of 5-HT synaptic contacts and triads in the rodent brain. Cx: cortex; mPFC: medial prefrontal cortex; NAC: nucleus 
accumbens; BNST: bed nucleus of the stria terminalis; TH: thalamus; CeA: central nucleus of the amygdala; BLA: basolateral nucleus of 
the amygdala; VTA: ventral tegmental area; DR: dorsal raphe. Color coded from blue to red represents the heterogeneous distribution 
of 5-HT axons connectivity (blue: asymmetrical synapses/excitatory triads; red: symmetrical synapse/inhibitory triads. Adapted from 8–41.
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