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ABSTRACT

In Alzheimer’s disease (AD), loss of neurons and synapses parallels the 
formation of neurofibrillary tangles, protein aggregates mainly composed of 
hyperphosphorylated and aggregated Tau protein. Tau is mostly a cytosolic 
protein but can also be secreted by neurons. Cell-to-cell transfer of misfolded 
Tau protein plays a key role in the spread of neurofibrillary pathology between 
brain regions in AD and other tauopathies. Advances in genome-wide 
technologies have identified a large number of genetic risk factors for late-
onset AD (LOAD). Currently, it remains unknown if genetic factors influence 
disease risk or progression rate by altering cell-to-cell propagation of Tau. 
Several LOAD risk genes are functionally associated with endocytic trafficking 
providing a potential link to Tau secretion and uptake. Recently, a LOAD risk 
gene FRMD4A was shown to regulate Tau secretion via a pathway linked to 
presynaptic vesicle machinery and polarity signaling. Tau release is linked to 
neuronal activity, and genetic factors that affect presynaptic vesicle release 
in the aging brain may also influence disease progression in AD and other 
tauopathies. In this mini review, we summarize the recent literature with a 
focus on the role of FRMD4A-cytohesin-Arf6 pathway and presynaptic vesicle 
machinery in the secretion of Tau.

Genetic risk factors of Alzheimer’s disease and cell-to-cell 
transmission of Tau 
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Cell-to-cell Propagation of Tau in Alzheimer’s Disease 
and other Tauopathies

Tau pathology in AD progresses through anatomically 
connected brain regions, beginning in the transentorhinal 
region, then involving the hippocampus and finally the 
neocortex1. The number and distribution of neurofibrillary 
tangles (NFTs) is strongly correlated with progressive 
cognitive loss in AD and most other tauopathies. 

Tau, a cytosolic microtubule-associated protein, can be 
released from cells, including neurons, under physiological 
conditions2. Misfolded and aggregated Tau has been 
reported to transfer between neighboring cells in vitro3-5 
and in vivo6-8. Multiple other proteins associated with 
neurodegenerative diseases, including amyloid-β peptide 
(Aβ), α-synuclein, mutant SOD1, mutant huntingtin and 
TDP-43, have also been shown to propagate protein 
misfolding pathology between cells in a similar prion-
like manner, although the respective neuropathological 
cascades may vary in the human brain (reviewed in9,10). How 
the accumulation and spreading of Aβ and Tau aggregates 
are mechanistically connected in human AD brain remains 
largely a mystery11. Clearly, however, Tau pathology can 
develop and spread in the absence of Aβ plaques, as 
evidenced by numerous tauopathies, such as familial cases 
of frontotemporal dementia that are primarily driven by 
aggregation-promoting mutations in the MAPT gene (that 
encodes the Tau protein)12. Also, there is an on-going 
debate whether primary age-related tauopathy (PART), an 
Aβ-independent temporal lobe NFT pathology frequently 
observed in the brains of aged individuals, is a separate 
disease entity from AD13,14.

While the cell-to-cell transmission paradigm now appears 
to explain how the neurodegenerative pathology spreads 
between brain regions, the cellular mechanisms of secretion 
and uptake of misfolded intracellular proteins remain 
incompletely understood. Conformational templating, a 
characteristic of amyloids in general, drives the seeding 
and accumulation of pathological protein aggregates9,10. 
Interestingly, specific conformations and strains with distinct 
propagation properties have been described for Tau5. It is 
currently unclear whether the release of Tau species from 
neurons is related to a normal physiological release pathway, 
unconventional secretory mechanisms or mechanisms related 
to neuronal injury. Cellular uptake of Tau fibrils has been 
shown to involve binding to heparan sulphate proteoglycans 
on the cell surface followed by macropinocytosis15, an actin-
dependent endocytic process that allows the entry of fluid-
phase macromolecular structures into the cell. However, 
membrane turnover in neurons is tightly controlled, and 
basal macropinocytic activity in mature neurons appears 
to be rather low16. Additional stimulation, such as axonal 
injury, may be required to promote neuronal uptake of 
protein aggregates via macropinocytosis. Importantly, 

microglial cells facilitate Tau propagation in vivo by packing 
phagocytosed Tau to exosomes that are more effectively 
uptaken by neurons than vesicle-free Tau species17. 

Do Genetic Risk Factors of Late-onset Alzheimer’s 
Disease affect Disease Risk or Progression Rate by 
Altering Tau Propagation?

Early-onset AD is an almost entirely genetically 
determined disease, characterized by highly penetrant 
disease-causing mutations in three genes (APP, PSEN1 and 
PSEN2) that are all functionally linked to generation of 
amyloid-β peptide18. In contrast, LOAD is a complex disorder 
with heterogeneous etiology, and variable age of onset and 
progression rate. The APOE gene (encoding apolipoprotein 
E) is a major genetic risk factor for LOAD19. Genome-wide
association studies (GWAS) have identified a large number
of common risk variants within >20 genetic loci associated
with LOAD20-25, including CLU, ABCA7, CD2AP, BIN1, CR1,
CD33 and the MS4A gene cluster.20-25. Next-generation
sequencing efforts have identified additional rare variants
with strong effects on disease risk, including TREM2 and
ABCA726-29. In addition, genome-wide association studies
have linked FRMD4A gene to LOAD21 and late-life cognitive
decline30. Although the exact functional roles of individual
susceptibility genes remain poorly understood, the main
LOAD-associated genetic loci appear to be functionally
linked to three major biological pathways: immune system, 
lipid metabolism and cell membrane processes (e.g.
endocytosis, synaptic function)31, 32.

Significantly increased levels of Tau in the cerebrospinal 
fluid (CSF) are associated with faster rate of cognitive 
decline and overall worse clinical outcome in AD33,34. In 
general, alleles associated with lower CSF Tau levels would 
thus be considered protective for disease risk, associated 
with less tau pathology and with slower cognitive decline, 
and vice versa. In support of this, genetic variants linked 
to increased CSF phospho-Tau (Thr181) levels were 
also associated with faster rate of disease progression 
while having no effect on disease risk or age of onset35. 
In particular, a single-nucleotide polymorphism (SNP; 
rs1868402) in the PPP3R1 gene linked to reduced parietal 
lobe expression of protein phosphatase B (calcineurin), a 
known Tau phosphatase, was associated with higher CSF 
phospho-Tau levels and faster rate of disease progression. 
Another genome-wide association study that used CSF 
Tau levels as an endophenotype of LOAD identified novel 
risk variants of the disease, including SNAR-I, GLIS3 and 
TOMM40, and confirmed the association of APOE and 
TREM2 with the variability of CSF Tau and phospho-
Tau levels36. These studies clearly indicate that common 
genetic variants have an impact on the CSF levels of Tau 
and that this may be associated with the risk of LOAD or 
rate of disease progression. Interestingly, none of the SNPs 
linked to altered CSF levels of Tau were associated with 
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Tau (MAPT) expression levels suggesting that they affect 
CSF Tau levels by a post-transcriptional mechanism, which 
could potentially include mechanisms regulating cellular 
release and uptake of Tau. 

How are the Risk Genes Connected to Pathogenic 
Mechanisms in LOAD?

Despite the rapidly accumulating genetic data, there 
remains a knowledge gap regarding the functional 
association of the risk genes and gene variants to the 
pathobiology of complex diseases. Single nucleotide 
polymorphisms that act as expression quantitative trait 
loci (eQTL) influencing gene expression constitute an 
important class of functional variants of genes. Several 
LOAD-associated risk variants, such as CLU, MS4A4A and 
ABCA7, harbor eQTLs37. Recently, transcriptional analysis 
of Braak-staged temporal cortex samples from AD patients 
and healthy controls revealed that the expression of 
FRMD4A, MS4A6A, CLU and TREM2 was altered in relation 
to increasing AD-related neurofibrillary pathology38. 

To gain more insight into the functional roles of LOAD 
risk genes, we combined individual silencing of selected 
LOAD risk genes (APOE, BIN1, CLU, ABCA7, CR1, PICALM, 
CD33, CD2AP, FRMD4A and TREM2; based on LOAD genetics 
meta-analyses39 and recent literature), together with AD 
pathobiology-based pathway analysis. We previously 
developed a panel of sensitive live-cell assays for monitoring 
changes of pathologically central protein-protein interactions 
in AD, such as key protein interactions related to Aβ generation 
and Tau hyperphosphorylation38,40,41,42. In combination with 
RNAi silencing of LOAD susceptibility genes, the AD-specific 
pathway sensors provide an easily accessible platform for 
studying functional roles of LOAD risk genes in live cells. 

While the expression of FRMD4A was found to be 
decreased in relation to increasing neurofibrillary 
pathology in the temporal cortex of LOAD patients, in vitro 
pathway analysis showed that reduced FRMD4A expression 
associates with both increased amyloidogenic amyloid 
precursor protein (APP) processing and increased Tau 
phosphorylation activity38. Furthermore, our recent study 
showed that altered FRMD4A level also significantly alters 
Tau secretion41, for the first time functionally linking a 
LOAD risk gene to basic cellular mechanisms of cell-to-cell 
transfer of Tau. None of the other top-ten LOAD risk genes 
included in this study showed a functional connection to 
Tau secretion. APOE knockdown caused a subtle increase 
in cellular uptake of Tau, an effect possibly related to 
the direct interaction of ApoE and Tau proteins43 in the 
extracellular space. 

FRMD4A, Cytohesin and Cell Polarity Signaling 
Modulate Tau Secretion

FRMD4A (FERM Domain Containing 4A) protein is 

involved in polarization of epithelial cells44 and mutations 
in the FRMD4A gene lead to microcephaly and mental 
retardation in humans45. However, most of the physiological 
functions of FRMD4A are so far unclear. Our data clearly 
suggests that FRMD4A-cytohesin-Arf6 pathway regulates 
Tau secretion41. Activation of this pathway in HEK293T 
cells by overexpressing FRMD4A or Arf6 leads to increased 
Tau secretion, whereas inhibition by FRMD4A RNAi or 
cytohesin inhibitor SecinH3 decreased it. Surprisingly, 
this effect was opposite in cortical neuron cultures, 
where inhibition of this pathway lead to an increase in 
Tau secretion. The significant increase of neuronal Tau 
secretion by FRMD4A/cytohesin inhibition suggests that 
the reduced FRMD4A levels in AD brain may be causally 
linked to spreading of Tau pathology.

Cytohesinsa are a family of Arf Guanine Nucleotide 
Exchange Factors (GEFs) that have a central Sec7-GEF-
domain, a protein-protein interaction mediating coiled 
coil (CC) domain and a membrane targeting pleckstrin 
homology (PH) domain. Cytohesins bind FRMD4A44 and 
activate the small GTPase Arf646 promoting its translocation 
to the plasma membrane47. Cytohesins function in various 
cellular processes including insulin receptor signaling48, 
integrin trafficking and cell migration46. Importantly, 
they also regulate neurotransmission47 and membrane 
trafficking49 at the presynaptic terminal, probably via their 
interaction with Munc13s50, that are proteins essential 
for synaptic vesicle priming51. As Tau secretion is related 
to neurotransmitter release2,52, it seems plausible that 
the changes we see in Tau secretion with modulation of 
FRMD4A-cytohesin pathway are connected to synaptic 
vesicle release. The extreme specialization of the 
presynaptic terminal may also explain why the effect of the 
FRMD4A-cytohesin pathway is different in neurons and in 
HEK293T cells51. 

The polarity signaling complex Par3/Par6/aPKCζ 
(Partitioning defective 3, Partitioning defective 6 and 
atypical Protein Kinase C ζ, respectively), that associates 
with FRMD4A and regulates its activity in epithelial cells44 
also affects Tau secretion41 (Figure 1). To our knowledge 
this is the first study implicating a link between cell 
polarity signaling and Tau secretion. As neurons are highly 
polarized cells, polarity signaling is not only important for 
their development and differentiation53 but also may play a 
role in plasticity54. In addition, polarity signaling proteins 
have a more general role in endocytic trafficking55, which 
may also lead to changes in Tau release.

In addition to Tau phosphorylation38 and secretion41, 
FRMD4A also affects Aβ secretion38. Notably, the secretion 

aCytohesin family aliases: 
Cytohesin 1 = mSec7-1, PSCD-1, 
Cytohesin 2 = mSec7-2, ARNO, PSCD-2
Cytohesin 3 = mSec7-3, GRP-1, PSCD-3
Cytohesin 4 = PSCD-4
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of Aβ into the extracellular space is also tightly regulated 
by neuronal activity in vitro56 and in vivo57. Whether Aβ 
secretion is similarly regulated with cytohesin/Arf6 and 
Par3/Par6/aPKCζ remains to be studied. Interestingly, 
cytohesins were recently also associated with another 
neurodegenerative disease, amyotrophic lateral sclerosis 
(ALS)58, but whether this is related to our findings needs to 
be further investigated. 

Conclusions

LOAD risk genes involved in endocytic trafficking, 
synaptic function and microglial activity may affect 
AD risk and progression through regulation of cellular 
secretion and uptake of Tau. The expression of LOAD risk 
gene FRMD4A is decreased in Alzheimer’s disease patient 
brains, and a decrease in FRMD4A protein level leads to an 
increase of neuronal Tau secretion. Based on these results, 
we suggest that a presynaptic signaling module consisting 

of FRMD4A, cytohesins and Arf6 acts as a regulator of cell-
to-cell transmission of Tau. 
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