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Neurodegenerative disorders spread over millions of people 
worldwide and are one of the greatest threats to public health. The 
prevalence of these disorders is expected to grow exponentially within 
the next few decades due to the increase in aging population and life 
span with a resultant enormous social and financial burdens. There is no 
adequate therapies to these disorders. Therefore, there is an urgent need 
to accelerate the discovery and development of effective treatments.

Although neurodegenerative disorders are broad ranging and highly 
complex, they may share overlapping mechanism and common targets 
for therapeutic interventions. Glycogen synthase kinase-3 (GSK-3) is 
recognized as an important target in this respect. Since its discovery 
as a key regulator of glycogen metabolism1, GSK-3 emerged as a multi-
tasking kinase involved in multiple cellular processes. In recent years, 
it became evident that GSK-3 plays key roles in neurological disorders 
through its ability to alter behavior, cognitive functions, and neuron 
cell survival2-6. Indeed, many targets controlled by GSK-3 are critically 
involve in neuron deterioration and disease progression. These include, 
for example, the microtubule associate protein tau7, pro-inflammatory 
factors8, heat shock proteins9, brain derived neurotrophic factor BDNF10 
and Wnt signaling pathway11. Worth mentioning is our recent findings 
that linked GSK-3 with impaired cellular clearance through negative 
regulation of autophagy and lysosomal activity12. Inefficient autophagy 
is coupled with accumulation and formation of typical neurotoxic 
aggregates in neurodegeneration conditions13,14. Altogether, this raise 
the paradigm that GSK-3 inhibition is a potent and beneficial therapeutic 
for neurodegeneration .

Development and design of specific inhibitors of protein kinases is a 
focus of many drug discovery programs. Most protein kinase inhibitors 
developed so far are small molecules that compete with the ATP binding 
site of the kinase. This type of inhibition, although powerful, often has 
limited specificity because the ATP binding site is highly conserved 
among protein kinases15,16. Indeed, clinically approved ATP competitive 
drugs are noted to carry with them the risks for severe side effects due 
to specificity issues and for being ineffective against drug resistance 
mutations17-20. Thus, it was clear to us that a different type of GSK-
3 inhibitors that do not bind (exclusively) to its ATP binding site is a 
favorable choice for clinical practice.

To fulfill this requirement we focused our attention on developing 
substrate competitive inhibitors (SCIs) for GSK-3. These compounds 
are short peptides that mimic substrate sequences and bind to the 
substrate-binding cavity of the kinase21. SCIs are considered specific 
because the substrate binding site is less conserved among the protein 
kinase family15,16, in addition, they are expected to be less prone to drug-
induced resistance due to the their large binding surface. We further 
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showed that it is possible to optimize the potency of GSK-3 
SCIs by strengthening their interactions with the GSK-3-
substrates binding site using computational and biological 
approach22. The first generation of GSK-3 SCIs function as 
pseudo- substrates23, namely, they are ‘phosphorylated 
invalid’ substrates24 (Fig. 1). Recently, we discovered a new 
type of SCI termed ‘substrate converted into an inhibitor’25. 
The discovery was unexpected as we found that when we 
turn the pseudosubstrate back to a substrate it functions 
as an inhibitor. Namely, the inhibitor is a ‘real’ substrate, 
it binds to GSK-3, and upon phosphorylation (by the 
kinase) it turns in-situ into a potent inhibitor (Fig. 1). Thus, 
in contrast to ‘normal’ substrates that will immediately 
dissociate from the enzyme after being phosphorylated, 
phosphorylation of the ‘substrate converted into an 
inhibitor’ will result in a tighter binding to the kinase25. In 
fact, the ‘substrate converted into an inhibitor’ differs from 
the original sequence composition of the natural substrate 
in at least two positions. These simultaneous changes are 
key for its accompanied behavior as an inhibitor.

The use of GSK-3 SCIs indeed provided proof of 
concept. Treatment with GSK-3 SCIs improved Alzheimer’s 
brain pathology and reversed cognitive decline12,25. They 
improved clinical symptoms in multiple sclerosis mouse 
model26, and enhanced cognitive skills in FMRP-/- mice 
that represent Fragile X syndrome27.

There are several advantages of the new modality 
of ‘substrate converted into an inhibitor’. First, the 
strict requirement for being phosphorylated increases 
specificity, thus, limiting off target effects, Second, the 
inhibitor is effective only toward active GSK-3 sparing the 
inactive GSK-3 population ‘unharmed’ by the inhibitor. 
Third, the design of this type of inhibitor may be applied to 
many other protein kinases.

In summary, inhibition of GSK-3 has been considered 
a promising therapeutic approach for treating several 
neurodegenerative disorders including Alzheimer’s 

and Parkinson’s disease, depressive behavior, autism, 
and Huntington’s disease. However, none of the GSK-3 
inhibitors that were developed reached the market. Our 
suggestion is that ‘correct’ inhibition of GSK-3 is the key 
for a successful use of such inhibitors. Hence, the different 
inhibition modality based on substrate competition and, 
in particular, the type of ‘substrate converted into an 
inhibitor’ described here is a potential approach for fruitful 
treatment in the clinic.
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