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ABSTRACT

Autism spectrum disorder (ASD) is a group of lifelong heterogeneous 
neurodevelopmental conditions with a wide range of severity levels that affect 
social communication and social interaction. Diagnosis of ASD relies on subjective 
observation of these clinical phenotypes. The growing body of big data generated by 
subjective methods and more recently by objective high-throughput technologies 
such as omics for the detection of biomolecules, is being successfully applied to a 
rapidly-growing number of machine learning (ML) algorithms to inform research for 
diagnostics and interventions for patients with ASD. While most reviews in this area 
are focused on the ML approaches, we highlight the impact of the database on the 
expected outcomes in ML-based ASD research studies.

Introduction
Autism spectrum disorder (ASD) is a set of neurodevelopmental 

conditions diagnosed by a qualified clinician such as a developmental 
pediatrician or neurologist1. It is characterized by qualitative 
impairments in social interaction and communication, as well as 
restricted, repetitive, and/or stereotyped patterns of behavior2. ASD 
diagnosis is not a straightforward process and is often made long after 
initiation. In most cases, assessment is reliable at the age of 2 years3, and 
sometimes at 18 months4, while onset can occur as early as the first- or 
second-trimester5 as fever-associated immune disturbances in response 
to prenatal infectious agent exposure6 lead to a pleiotropic effect on 
metabolic pathways7.

There is no “one-pill-fits-all” approach for ASD treatment. 
Personalized educational and behavioral therapies are the main 
approaches, supplemented with prescription medication in 48% of 
children8. Evaluation of treatment effectiveness in children with ASD is 
challenging due to the variability in symptoms expressed and in severity 
levels both among children with ASD and within each child over time. 
Also, it requires stepwise assessments that often involve family member 
and care giver interactions. Dykens et al.9 showed that these in-person 
interactions for ASD evaluation can introduce additional variation 
resulting from the child’s distress, impacting the outcome. 

The significant increase in the availability of data and machine 
learning (ML) algorithms presents new opportunities to diagnose, 
distinguish categories of patients, predict and monitor the efficacy of 
therapy, and identify the underlying conditions of ASD. ML is an artificial 
intelligence (AI) branch based on algorithms and statistical models that 
learn and improve from experience without being explicitly programmed 
by drawing inferences from patterns in data to make predictions or 
decisions based on those patterns.
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This minireview aims to provide an overview of ASD 
ML studies with a focus on the importance of database 
selection for ML applications and the ability to incorporate 
bioinformatics tools such as systems biology and disease 
genomics to achieve the desired outcomes. 

Data Sources
Significant increases in the number of ASD cases, the 

amount of ASD-related data from multiple technologies 
(e.g. genomics, rs-fMRI, etc.) and the number of sources (e.g. 
national databases, foundations for ASD research etc.) are 
currently driving the growth in database sources available 
for ML applications10,11. These sources include data 
resources with phenotypic and genetic data of thousands 
to tens of thousands of participants per database such 
as the National Database for Autism Research (NDAR), 
Simons Foundation Autism Research Initiative (SFARI), 
and the Autism Genetic Resource Exchange (AGRE).

However, ML predictions in life sciences are heavily 
dependent on high quality data characterized by: 1) 
correct experiment design - investigators can estimate 
the errors and understand the bias and sensitivity of 
the data; 2) standardization of data repositories - the 
processes for data extraction, analysis, and quality control 
are standardized; and 3) reproducibility - statistical design 
and analysis that ensure reproducibility of a study at 
the experimental, empirical, computational and ethical 
levels12. While the information regarding experimental 
design and data repositories are documented in the 
source, reproducibility is often an unknown factor, with 
higher impact in data from subjective evaluation. In a 
study aiming to determine the validity of the findings of 
100 peer-reviewed studies published in three psychology 
journals, the authors found 50% of the studies could not 
be reproduced13. Although successful replication provides 
only validity of the results, it is a prerequisite for medical 
and physiological interpretation of ML predictions.

The availability of multiple high-quality data sources 
for clinical phenotypes obtained via a variety of modalities 
including observations by parents, clinicians, video, and 
audio devices11 and omics techniques that numerically 
quantify fundamental biological processes14 have the 
potential to associate behavior with omics information in 
children with ASD, but present challenges for interpretation. 
For example, linking available data from clinical phenotypes 
of ASD to genetic factors such as the high-confidence ASD 
(hcASD) genes during fetal development5, environmental 
factors such as maternal nutrition, viral and bacterial 
infections15, and cultural beliefs at the community-level 
that can delay early intervention and impact the severity 
clinical phenotypes of ASD16, is possible, but interpretation 
is difficult. 

Figure 1 illustrates the general path from genotype to 

clinical phenotype and is divided into two parts: 1) the 
cellular, which is evaluated by objective omics methods; 
and 2) the clinical phenotype, in which subjective human 
interpretation is required during the process. Although the 
figure presents a straight line between the two parts, results 
are not entirely a continuum, as objective and subjective 
evaluations capture different aspects of the diagnosis and 
act as complementing rather than overlapping information. 
This can affect the ability of ML to predict clinical phenotype 
directly from genetics.

Cellular Level
At the single-cell level, the technologies to extract 

data belong to the omics disciplines, a suffix used in life 
sciences to describe the large-scale data/ information 
required to understand a complete biological system17. 
Using cellular features such as DNA and mRNA in a high-
throughput manner, researchers can characterize different 
biological systems in a static or dynamic mode and connect 
the information from DNA all the way downstream to 
a metabolite. Genomics databases can integrate with 
disease genomics to identify disease-associated genes and 
disease-causing mutation biomarkers, and multiple omics 
databases can integrate with bioinformatics platforms 
such as systems biology to construct networks, predict 
interactions and monitor dynamic responses18. Since 
gene expression is regulated at the mRNA and protein 
levels from transcription initiation to protein degradation, 
metabolomics has the best tools to link the individual 
physiological/pathophysiological state to both downstream 
objective methods and upstream subjective methods while 
factoring in the impact of genetics, environmental stimuli, 
diet, and gut microbiome19.

System Level
At the system level (Figure 1), upstream to the omics 

disciplines is the brain image-derived phenotype, a 
quantifiable data-driven approach that associates brain 
activity and clinical phenotype of ASD. Linked to a specific 
area in the brain, functional magnetic resonance imaging 

Figure 1: A simplified presentation of the hierarchical path from 
genotype to clinical phenotype with respect to the effect of genetics 
and environment in patients with ASD and the indicated methods to 
extract data and integrate it into a dataset.
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(fMRI) is a noninvasive functional imaging technique 
in which the metabolic activity of tissues is determined 
indirectly via oxygen consumption20. The resting-state fMRI 
(rs-fMRI) is an advanced alternative that quantifies the 
spontaneous brain activity of an individual in the absence 
of stimuli (during resting).

Subjective data sources from modalities such as eye 
gaze and atypical ASD-specific motor phenotype of slow 
responses for finger tapping can be quantified by eye 
movement and kinematic tests21. The gold standard for 
ASD diagnosis is the complementary Autism Diagnostic 
Observation Schedule (ADOS) and the Autism Diagnostic 
Interview – Revised (ADI-R), the main data sources, 
together with the Childhood Autism Rating Scale (CARS) 
and Gilliam Autism Rating Scale (GARS)11. Parental 
multiple-choice questionnaires22 and Likert scale surveys23 
are often used with other data sources in ASD studies.

Linking omics technology and behavioral assessment 
was previously reported by Bent et al.24 in a study that 
statistically correlated clinical phenotype in children with 
ASD treated with a sulforaphane supplement from broccoli 
and metabolomics. In this study, parental reports suggested 
a metabolic link between sphingolipids/ sphingomyelins 
and improvement in clinical phenotype. A recent study 
by Quillet et al.25 identified biomarkers distinguishing 
ASD and typically developing (TD) groups and linked the 
cannabinoids tetrahydrocannabinol (THC), cannabidiol 
(CBD) and cannabigerol (CBG) with metabolite levels in 
children with ASD. It was the first to use ML algorithms on 
a pharmacometabolomics dataset of previously identified 
cannabis-responsive biomarkers and other metabolites in 
children with ASD that shift toward physiological levels 
determined in typically developing children (TD) after 
successful medical cannabis treatment23,26. 

Machine Learning Applications
Since 2012, researchers have trained ML algorithms on 

a wide range of data types to improve diagnostic processes 
and the understanding of ASD11,27. ML applications are often 
used to facilitate the direct diagnosis of ASD in individual 
patients, integrate observational data, and facilitate the 
analysis of parent-reported questionnaires and reported 
behavior from home-recorded videos22, and/or kinematic 
and motion features from video recordings of adults21. ML 
applications are also used for ASD biomarker discovery, 
training on data acquired from a broad range of technologies: 
fMRI20, metabolomics25,28, proteomics29, transcriptomics30 
or a combination of those31.  At the genome level, ML has 
been applied for functional characterization of the genetic 
basis of ASD by constructing a gene-interaction network 
model32. 

These examples highlight the progress made in artificial 
intelligence (AI) in the past few years, and its potential for 

healthcare applications in general and for ASD diagnostics 
in particular as the availability, diversity, and quality of 
relevant data grows, driven by the ability of ML models 
to find complex, non-linear relationships in the data 
compared to more traditional data analysis methods. The 
studies describe in detail the processes followed for the 
data processing and feature engineering steps. This is a key 
aspect of ML applications, as the data fed to the models is 
central to their performance. 

Machine Learning Approaches

The quantity of data has a major impact as well. ML 
methods such as Support Vector Machines (SVM), Random 
Forest, Gradient Boosting and Deep Neural Network must 
be selected to suit the size of the dataset and type of data. 
Datasets with a large number of features per sample 
require more samples and more complex models, such 
as deep neural networks (DNN). These networks, with 
multiple layers of artificial neurons, or computational 
units, are capable of modelling non-linear relations, and are 
associated with the branch of AI called deep learning that 
has enabled recent breakthroughs in applications such as 
computer vision, speech recognition, language modelling 
and medical image analysis32-38.

In most of the ASD-related studies, a data-centric 
approach was adopted, where efforts focus on engineering 
available data to get the best result using classic ML 
algorithms33. This includes curating a subset of samples 
with pre-defined properties and then finding the subset 
of features that yield more robust predictions over the 
available dataset. Biomarker discovery studies use iterative 
approaches to develop effective ML models that obtain 
good diagnostic predictors28-30. Meta-analyses across 
multi-omics and microbiome studies have limitations in 
confounders such as sex-, age- and geography-related batch 
effects, compositionality, dimensionality, and sparsity. To 
address that, studies analyzing differential abundance of 
omics features have proposed algorithms such as Bayesian 
inference-based ranking algorithms as described in Morton 
et al. for the Gut-Brain Axis (GBA) disruption in ASD31. This 
necessity for data engineering reflects the need to get 
relevant results from datasets with limitations. 

Given the importance of data and its limitations, 
synthetic data has emerged in recent years as a promising 
technology for ML applications. According to the Royal 
Society and The Alan Turing Institute: “Synthetic data 
is data that has been generated using a purpose-built 
mathematical model or algorithm, with the aim of solving 
a (set of) data science task(s)”39. Progress with DNN 
architectures, such as Generative Adversarial Networks, 
has extended the potential for generating data that reflects 
real-world data. Potential objectives for using synthetic 
data include patients’ privacy protection, data sharing 
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facilitation, data augmentation and biases mitigation, 
all of which could be particularly relevant in healthcare 
applications40. While synthetic data offers great potential, 
it also presents major limitations that remain to be 
addressed and significant research is needed from a ML 
perspective and domain specific perspective. Critically, the 
quality of synthetic data is highly dependent on the quality 
and amount of the original data and the generation model. 

Developing ML applications involves trade-offs between 
choice of models, quantity of data available and data 
engineering to improve the quality of the data. While there 
is not one definition of data quality, in the ML discipline 
we commonly refer to data that enables achievement of 
intended goals. While informative high-quality data can 
be hard to collect, behavioral data with limited quality 
and interpretation biases from hundreds or thousands 
of surveys is often more readily available. Abbas et al.22 
studied 10 features in over 5,000 individuals with ASD 
and over 1,300 TD individuals. Feature engineering may 
be used to reduce interpretation bias, for example, in the 
development of diagnostic tools by focusing on finding 
a small subset of features with sufficient generalization 
power. In this respect, fMRI is conversely an extremely 
rich type of data, with large amount of information that is 
not necessarily relative to ASD itself and prone to noise41. 
Annotating this type of data and gathering large datasets is 
challenging and very time consuming. Authors can use pre-
existing knowledge to select robust samples and to distill 
the data to correlations between Regions Of Interest (ROIs) 
so that it is possible to train a model on a smaller number 
of samples41.

Studies focusing on lower levels of systems biology such 
as transcriptomics, proteomics or metabolomics contain 
feature rich datasets with limited numbers of samples. 
These can be managed through data-centric methods to 
obtain potential diagnostic solutions28-30. However, the data 
sources are of higher quality and point to a broader range of 
questions that can be answered given sufficient resources 
and larger datasets. For example, Quillet et al.25 successfully 
used a pharmacometabolomics approach for distinguishing 
ASD groups and pharmacodynamics indications of 
cannabinoids using 645 features in 15 children with ASD 
and 9 TD children. This study linked metabolic changes in 
children with ASD to known biomarkers that can indicate 
clinical phenotype such as the stress biomarker cortisol 
and the aggression biomarker dehydroepiandrosterone 
sulfate (DHEA-S).

Bioinformatics Integration
Both supervised and unsupervised ML techniques have 

been successfully integrated with multi-omics databases. 
Feldner-Busztin et al.42 indicated the potential of the 
technologies while emphasizing the need to increase the 

sample size for each omics and the overall overlapping 
omics data per sample, namely the genomics, epigenomics, 
transcriptomics and metabolomics per sample. A range 
of analytical techniques are applied in several papers 
covering genomics32, RNA signature30,43, proteomics29, 
and metabolomics25,28. In particular, two high-level 
bioinformatics annotation engines (Gene Ontology: 
geneontology.org; and KEGG: www.genome.jp/kegg/) 
are applied across these patient-derived bioinformatics 
datasets to permit classification of genes, RNA, proteins 
and metabolites. Annotations and clusters demonstrate 
relevance: 1) to medical condition (in this case ASD vs. 
TD); 2) with cellular and organ location; 3) with metabolic 
pathways permitting elucidation of high-level effects 
such as inflammation; and 4) with neuronal activity (e.g. 
endocannabinoid pathways and neuronal signaling).

Future Perspective

We are at an inflection point where the omics and analytics 
fields are maturing, ML is being applied across omics 
data, and pharmacometabolomics biomarkers (cannabis-
responsive) are being identified. Providing the right sample 
size and features with the available bioinformatics tissue-, 
patient-, cohort-, and pathophysiology-specific knowledge 
will allow ML applications to associate the current clinical 
phenotypes with underlying conditions of ASD and assist 
in diagnostic and therapeutic solutions. The growth in 
qualitative and quantitative data, the growing affordability 
of personal collecting devices and omics instruments 
together with standardization of databases show promise 
to provide the much-needed breakthroughs to effectively 
diagnose and treat ASD. These methods can also help 
to elucidate the extended endocannabinoid metabolism 
and related pathways, and to drive drug discovery and 
development, as well as to permit quantitative diagnosis 
for ASD. 

Conclusions

Available ML techniques are sufficient to identify 
hidden interactions in large and complex datasets from 
individuals with ASD that link clinical phenotype to 
genotype, temporal changes in microbiome composition 
and medical cannabis treatment. The type of datasets 
currently used can answer many questions but there is a 
need for new data arising from experimental designs and 
detection tools specifically setup to answer some of the 
fundamental questions of ASD. Development of a sufficient 
quantity of informative high-quality, feature rich datasets 
that integrate omics, neuroimaging and bioinformatics 
in a dynamic mode such as before, during and after 
treatment will advance prediction and evaluation of 
treatment outcomes, and identification of the underlying 
conditions of ASD.
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