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Abstract

The molecular characterization of postganglionic sympathetic neurons by RNA 
sequencing has allowed the full assessment of gene expression in individual cells 
and classification of neurons into subpopulations defined by their gene expression 
profile and developmental history. The identification of growth factor receptor 
subunits specifically expressed by select neuron subpopulations enabled the 
demonstration of GDNF family ligands and the respective receptor subunits as 
instrumental in the innervation of certain targets. These are first critical steps in the 
attempt to characterize the molecular processes leading to the establishment and 
maintenance of target-specific sympathetic efferent pathways.

Introduction
The knowledge on the cellular elements of the autonomic nervous 

system has made enormous progress since the description of 
preganglionic and postganglionic elements by John Newport Langley 
at the turn to the 20th century1. Molecular analysis focusing on key 
functional properties was successively refined from physiological2,3 
and histological4 detection of the transmitter in noradrenergic 
sympathetic neurons to the detection of immunoreactivity as well as 
enzyme activity for the transmitter-synthesizing enzymes in the case 
of both noradrenergic as well as cholinergic autonomic neurons5-7. 
Histochemical detection of the mRNAs coding for these enzymes as 
well as the vesicular neurotransmitter transporters coexpressed from 
synexpression gene groups enabled, with highly enhanced specificity 
and sensitivity, the detection and developmental surveillance of neurons 
with a given transmitter phenotype8,9. With the dramatic advances 
in RNA sequencing and bioinformatical processing, data sets for the 
transcriptomes of individual cells are available that have been dreamed 
of two decades ago10,11.

Noradrenergic and Cholinergic Sympathetic Neuron Classes in 
the Era of Single Cell RNA Sequencing

With the advent of high throughput sequencing technologies and the 
massif reduction in the amount of starting RNA required for analysis, 
the generation of single cell transcriptomes displaced microarrays 
for gene expression profiling12,13. Data acquisition and analysis set 
complex demands on quality control and data normalization, read 
mapping, dimensionality reduction, feature selection and cluster 
analysis14. The method then allows classification of neural subtypes 
and characterization of marker genes in addition to the quantitative 
interrogation of many features of the gene expression profile. For 
postganglionic sympathetic neurons, this approach has enabled the 
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characterization of several noradrenergic and cholinergic 
subpopulations together with the partial assignment to 
anatomically, histologically and developmentally defined 
neuronal features10. In addition, analysis of the same 
data set allowed the characterization of noradrenergic 
and pan-neuronal synexpression groups of genes15. Yet 
the full correlation with the multitude of anatomically 
and physiologically defined sympathetic pathways is still 
open16.

With the availability of transcriptomes for sufficiently 
large numbers of neurons derived from mouse stellate and 
thoracic sympathetic ganglia, a classification into different 
classes of noradrenergic (NA 1-5) and cholinergic (ACH 1 
and 2) sympathetic neurons was resolved10. Interestingly, 
the transmitter phenotype of the ACH 1 and 2 populations 
is in the meantime categorized as cholinergic and 
noradrenergic 11, www.mousebrain.org. indeed, cells in the ACH 1 
and 2 populations may not only express the cholinergic 
marker gene vesicular acetylcholine transporter (VAChT, 
Slc18a3) but also the noradrenergic marker vesicular 
monoamine transporter 2 (VMAT2, Slc18a2) in addition 
to the transmitter synthesizing enzymes10,15. This speaks 
to the question raised already 40 years ago whether 
sympathetic neurons can release acetylcholine in 
addition to noradrenaline17. The very large majority of 
the characterized neurons, however, in particular nearly 
all neurons classified as noradrenergic (NA) are devoid 
of cholinergic markers such as the vesicular acetylcholine 
transporter.

Some neurons first classified as cholinergic (ACH 1 and 
2) as a result of the general gene expression profile lack 
expression of detectable transcripts for the cholinergic 
marker genes choline acetyltransferase (ChAT) and VAChT 
altogether10. The significance of this peculiar observation 
is currently not fully understood and entails the question 
for the detection limit of the RNA sequencing procedures. 
An explanation may be the low levels for the transcripts 
from the cholinergic locus genes, ranging roughly tenfold 
below those for the genes coding for the enzymes of the 
noradrenaline biosynthesis pathway10,15. In addition, their 
transport and distribution within the cell compartments 
may be responsible for the lack of reliable detection 
in RNA extraction procedures from the isolated soma. 
Another explanation may be the plasticity of transmitter 
phenotype in a subpopulation of sympathetic neurons18,19. 
These cells are distinguished by expression of cholinergic 
as well as noradrenergic marker genes with transcript 
levels depending on neuronal activity or environmental 
growth factor supply. However, it needs to be emphasized 
that the postganglionic sympathetic neurons innervating 
rodent sweat glands are functionally cholinergic by several 
physiological criteria6.

Taken together, single cell RNA sequencing has 

strongly promoted the characterization and classification 
of sympathetic neurons. For the further analysis of cell 
types in the autonomic nervous system, it provides a 
platform for the comparison of sympathetic neurons in the 
different paravertebral and prevertebral ganglia and for 
the comparison with parasympathetic neurons.

In addition to the transmitter phenotype-related 
and neuropeptide markers, electrophysiological 
and morphological features are key determinants of 
sympathetic neuron diversity20. The degree to which this 
diversity as described in mice21,22 can be correlated and 
approximated by RNA sequencing approaches is still open. 
For the appreciation of the physiological role of neurons 
in sympathetic efferent channels it poses an important 
consideration.

Assigning Postganglionic Neurons to Target-Specific 
Sympathetic Pathways

With increasing understanding of gene expression 
patterns and biochemical properties of individual 
autonomic neurons, the question gains momentum, 
how these neurons are recruited to distinct sympathetic 
outflow channels conveying appropriate regulation 
to diverse target tissues. With the analysis of reflex 
activation patterns in sympathetic neurons innervating 
different target structures, it became apparent that the 
SNS possesses diverse functional pathways distinguished 
at molecular, cellular and integrative levels23,24. Specific 
central autonomic networks allow for selective control of 
the sympathetic outflow to individual tissues and thus for 
the realization of patterned autonomic responses25,26. The 
questions whether these precisely organized pathways in 
the neuraxis27-29 possess specific molecular signatures and 
how these arise during development are now becoming 
addressed. 

Apart from noradrenergic and cholinergic 
neurotransmitter phenotype-related markers and 
neuropeptides, neurotrophin receptor (Ntrk) and GDNF 
family ligand receptor (Gfr alpha and Ret) subunits appear 
as preferentially expressed in selected sympathetic neuron 
subpopulations10. The noradrenergic NTRK1/TRKA-
expressing neuronal subpopulations NA2, NA4 and NA5 
reexpress Ret during postnatal development concomitant 
with target innervation. By analyzing expression with 
immunohistochemistry for the receptor subunit proteins 
and neuropeptide NPY in sympathetic fiber tracts adjacent 
to the target structures in combination with retrograde 
labeling from target areas, selected neuron subpopulations 
were further characterized. NA2 neurons represent the 
Gfra3- and NPY-positive sympathetic subpopulation 
innervating nipple erector muscle. NA5 neurons constitute 
the Gfra2-positive but NPY-negative subpopulation 
innervating piloerector muscle. Importantly, with a 
combination of conditional gene inactivation at advanced 
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developmental stages and immunohistochemical detection 
of sympathetic fibers in the mutant target tissues, it 
was demonstrated that, via developmentally regulated 
expression of the Gfra2 and 3 ligands artemin and neurturin 
in combination with postnatal induction of Ret expression 
in a subpopulation of sympathetic neurons, the innervation 
of the respective target tissues is regulated10.

The study demonstrates how the knowledge on 
subpopulation-specific gene expression provides tools 
not only to identify the diverse neuronal populations but 
also to characterize the mechanisms of integration of these 
populations into autonomic neuron circuits. These data 
extend earlier knowledge on the role of neurotrophin30-32 

and GDNF family ligand10,33,34 signaling in sympathetic 
neuron target innervation. Additional growth factor 
families are involved in this process such as endothelins 
and semaphorins35,36 or the vascular endothelial growth 
factor and Eph/ephrin family members37,38. The full 
complement of signaling decisions on the route from the 
developing sympathetic ganglion through the appropriate 
nerve branches to the proper target still have to be worked 
out.

Uncovering Aspects of the Neurochemical Code of 
Sympathetic Pathways by Immunohistochemistry 
and Retrograde Labeling

Neurochemical and retrograde labeling approaches 
have provided early insight into the molecular code 
of selected sympathetic target-directed pathways. 
Immunohistochemistry for neuropeptide Y (NPY), 
expressed in noradrenergic cardiovascular sympathetic 
neurons39,40 as well as vasoactive intestinal peptide (VIP) 
and calcitonin gene-related peptide (CGRP) expressed in 
cholinergic sudomotor neurons41 has been used for the 
characterization of the respective preganglionic neurons. 

Applying immunohistochemistry for corticotrophin 
releasing factor-like immunoreactivity (CRF-LI) in cat 
stellate and lumbar sympathetic ganglia resulted in the 
staining of terminal baskets derived from innervating 
preganglionic neurons surrounding 96 to 99% TH-negative, 
but CGRP-positive postganglionic neuronal cell bodies42. 
Conversely, retrograde labeling from the paw innervated 
by sudomotor and vasoconstrictor neurons with fluorogold 
labeled postganglionic sympathetic ganglion cells including 
approximately 30% somata surrounded by CRF-LI terminal 
baskets.

Retrograde labeling with different dyes applied to the 
heart ventricle or the cut end of the cardiac nerve in the 
rat disclosed NPY-positive and negative postganglionic 
sympathetic neuron populations43. Association of NPY-
positive cell bodies in rodent stellate and superior cervical 
ganglia with synaptic baskets positive for cocaine and 
amphetamine-regulated transcript peptide (CART) allowed 

the characterization of innervating preganglionic neurons 
in the cardiovascular pathways as CART-positive cells44. 
The finding was confirmed by transneuronal tracing using 
pseudorabies virus from skeletal muscle demonstrating 
the innervation of NPY-positive vasoconstrictor neurons by 
CART-positive preganglionic neurons.

By combination of immunohistochemistry for 
neuropeptides and calcium binding proteins with 
retrograde labeling and nerve transection, initial 
characterization of sympathetic pathways to additional 
targets such as the iris and submandibular glands were 
performed45,46.

Thus, the combination of peptide immunohistochemistry 
and retrograde labeling was able to characterize several 
features of sympathetic pathways innervating the heart 
and the vasculature as well as sweat glands in two classical 
model systems, the cat and the rat. Transneuronal tracing 
with neurotropic virus expressing fluorescent marker 
proteins promises to allow selection of neurons in given 
sympathetic pathways for RNA sequencing. In this manner, 
the full transcriptome in these pathways may become 
unveiled and provide information on their equipment 
with gene products involved in contact formation and 
information propagation between neurons and targets.

The establishment of Specific Synaptic Connections 
from Preganglionic to Postganglionic Neurons 

The formation of the proper synaptic connections 
between the pre- and postganglionic sympathetic neurons 
is key to the establishment of the diverse functional 
pathways supplying appropriately patterned sympathetic 
activity to the target organs23,25.

Distinct regulation is demonstrated for sympathetic 
outflow channels subserving different functional contexts. 
This can be observed for sympathetic innervation to 
vasoregulatory and thermoregulatory effectors47,48. It is 
detected for the innervation of a range of target organs such 
as the heart as compared to kidney49,50 or to spleen51-53. Also, 
differential regulation of the blood circulation in distinct 
somatic and intestinal vascular beds is accomplished by 
distinct patterns of efferent sympathetic activity54,55. Skin 
and muscle blood flow are distinctly regulated56-59.

The molecular logic that enables the development and 
sustains the maintenance of this diversity in sympathetic 
efferent pathways is currently not fully understood. 
During development it is a multistep process including 
among others synapse formation of preganglionic onto 
postganglionic sympathetic neurons and formation of 
appropriate synaptic contacts between central pre-motor 
neurons and the appropriate preganglionic neurons.

A critical set of events in this multistep process is the 
final choice of the appropriate postganglionic targets by 
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preganglionic neurons, the initial synapse formation and 
the regulation of synapse number during maturation. In 
different populations of autonomic neurons the postnatal 
refinement of synapse numbers has been documented by 
electrophysiological recording60. Neurotrophin signaling 
depending on growth factors derived from the target61,31 
as well as from the preganglionic neurons62,63, and their 
activity dependence has been characterized. However, 
the processes responsible for establishment of specificity 
in development of the diverse target-specific sympathetic 
pathways are unknown.

Lessons from Spinal Motor Neuron Specification
For spinal motor neurons, developmental specification 

and integration into circuits required for coordinated 
muscle movement has been analyzed using genetic 
approaches in mice64,65. Several features important for 
specific innervation of skeletal muscle targets by spinal 
motoneurons are also relevant for the development of 
target-specific sympathetic pathways: migration and 
coalescence of the differentiating motoneurons to their 
final dorsoventral positions in spinal cord columns66,67, 
the innervation of the appropriate target68, and target-
dependent maturation processes that affect connectivity 
within the spinal cord69.

The processes entail transcriptional specification 
involving Hox proteins and regulatory ret signaling70-72. 
The ret ligand GDNF and its receptor subunit GFRa1 are 
required for correct positioning of motor neuron cell 
bodies in the spinal cord, invasion of embryonic target 
tissue, and induction of the ETS transcription factor Pea3 
in a motoneuron subpopulation73. Pea3 is prerequisite for 
correct positioning of the motoneurons within the spinal 
cord and normal axon branching within the target74. The 
observations demonstrate a signaling sequence from the 
target-derived growth factor resulting in proper maturation, 
positioning and target innervation of a motoneuron 
subpopulation. Hox proteins coordinate motoneuron 
subtype specification, determine ret expression levels and 
define GFRa subunit profiles72.

Interestingly, the ETS transcription factor Er81, 
expressed in a nonoverlapping motor and a sensory 
neuron subpopulation, is required for establishment of the 
appropriate synaptic contacts between the motoneurons 
and their sensory input75. The neurotrophin NT3 is required 
for Er81 expression in the sensory neurons76. These 
observations illustrate the involvement of GDNF family 
ligand and neurotrophin signaling in the differentiation 
of spinal cord motor circuits. Thus, both growth factor 
and receptor families are involved in motoneuron and 
sympathetic neuron differentiation.

In a comparable manner, such an analysis is expected 
to not only provide understanding of the molecular 

mechanisms underlying target-selective outgrowth of 
sympathetic nerve fibers. In addition, it may shed light 
on the positioning of preganglionic cell bodies in target-
specific cell clusters in the intermediolateral cell column 
of the spinal cord77. Moreover, an analysis of the principles 
underlying the synaptic organization of distinct functional 
pathways in sympathetic ganglia78 appears to become 
experimentally accessible.

Progressing from Axonal Pathfinding to Selective 
Synapse Formation

A question of particular interest is the association and 
interaction of these signaling systems with proteins acting 
as guidance cues and in particular membrane-associated 
proteins suitable to mediate cell-adhesion and cell-type 
identification79,80. In the case of spinal motoneurons this 
has been shown for ret and Eph/ephrin signaling81 by 
cooperative interaction of the two signaling systems82. Also, 
protocadherins expressed in motoneurons83 are engaged 
with ret in mutual regulation and stabilization as shown in 
stem cell derived motoneurons and primary postganglionic 
sympathetic neurons84. 

in addition, synaptic organizer hubs of the neurexin 
and neuroligin85,86 as well as the receptor - protein tyrosine 
phosphatase (LAR-RPTP)87,88 families will attract interest. 
In postganglionic sympathetic neurons neurexin induction 
and splice variant expression is regulated during maturation 
and target innervation89. However, developmental 
regulation of their binding partners, in particular 
neuroligins, and the expression of both protein families 
in preganglionic sympathetic neurons is not analyzed. 
The study of the role of the above-mentioned signaling 
systems in interaction with these synaptic organizers in 
the establishment of target-specific sympathetic pathways 
can be expected to be of outstanding relevance.

Conclusions
The molecular characterization of the cellular elements 

in the sympathetic nervous system was greatly refined 
during the last three decades. From the demonstration of 
functional signature genes such as tyrosine hydroxylase 
and choline acetyltransferase it progressed to the 
characterization of the full transcriptome detected in 
cell bodies of postganglionic neurons in selected mouse 
sympathetic ganglia. With functional characterization 
of an ever-increasing selection of gene products, the 
interrogation of neuronal circuits moves to a new level. 
On the one hand, the characterization of transcriptomes 
of large numbers of individual neurons allows the 
classification of sympathetic neuron subpopulations and, 
to a certain extent, their functional characterization. On the 
other hand, the knowledge on the subpopulation-specific 
expression of a range of marker genes opens, comparable 
to the study of the spinal motoneuron circuits, the analysis 
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of target-specific sympathetic pathways. This involves not 
only the study of the projection of preganglionic neurons 
to their postganglionic partners and to the final targets 
but also the analysis of the innervation from the distinct 
autonomic CNS centers by premotor to preganglionic 
neurons. This compilation of data promises to unravel the 
sympathetic autonomic neural circuits required for the 
synchronization of circulation and temperature regulation, 
balancing of the fluid matrix, regulation of bowel function 
and sexual organs among others.
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