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ABSTRACT

Alzheimer’s disease (AD) is characterized by extensive deposition of amyloid 𝛽 (A𝛽) 
and formation of neurofibrillary tangles (NFTs) consisting of hyperphosphorylated 
Tau.  So far, a variety of AD drugs targeting A𝛽 have been developed, but ended in 
failure.  A recent focus on AD therapy, therefore, is development of Tau-targeted 
drugs.  A𝛽 activates glycogen synthase kinase-3𝛽 (GSK-3𝛽), that plays a central role 
in Tau phosphorylation, responsible for NFT formation.  The linoleic acid derivative 
DCP-LA has been developed as a promising drug for AD therapy.  DCP-LA serves as 
a selective activator of PKC𝜀 and a potent inhibitor of protein tyrosine phosphatase 
1B (PTP1B).  DCP-LA restrains Tau phosphorylation efficiently due to PKC𝜀-mediated 
direct inactivation of GSK-3𝛽, to PKC𝜀/Akt-mediated inactivation of GSK-3𝛽, and to 
receptor tyrosine kinase/insulin receptor substrate 1/phosphoinositide 3-kinase/3-
phosphoinositide-dependent protein kinase 1/Akt-mediated inactivation of 
GSK-3𝛽 in association with PTP1B inhibition.  Moreover, DCP-LA ameliorates spatial 
learning and memory impairment in 5xFAD transgenic mice, an animal model of 
AD.  Consequently, combination of PKC𝜀 activation and PTP1B inhibition must be an 
innovative strategy for AD therapy.

Introduction
Accumulating evidence has pointed to the role of amyloid 𝛽 (A𝛽), a 

main body of amyloid (senile) plaques, and Tau protein, a main body 
of neurofibrillary tangles (NFTs), in the pathogenesis of Alzheimer’s 
disease (AD).  Huge studies have been done for development of AD drug 
targeting A𝛽, but no expecting drug has been obtained.  Recent target, 
therefore, has been turned to Tau.

Tau is abundantly expressed in neurons of the central nervous system 
and stabilizes microtubules by interacting with tubulin.  Microtubules 
are the tracks for motor proteins bearing intracellular transport of 
vesicles, organelles and protein complexes1,2, and Tau modulates 
microtubule dynamics including axonal transport3-6.  Tau is upregulated 
during neuronal development, to promote generation of cell processes 
and establish cell polarity7.

When hyperphosphorylated, Tau detaches from the microtubules 
and forms fibrils in an insoluble form, referred to as paired helical 
filaments (PHFs), and NFTs comprises aggregation of PHFs8,9.  Tau is 
phosphorylated by a variety of serine/threonine protein kinases such 
as glycogen synthase kinase-3𝛽 (GSK-3𝛽), cyclin-dependent kinase 5 
(Cdk5)/p25, extracellular signal-regulated kinase 2 (ERK2), S6 kinase 
(S6K), microtubule affinity-regulating kinase (MARK), SAD kinase 
(SADK), protein kinase A (PKA), calcium/calmodulin-dependent protein 
kinase II (CaMKII) or Src family kinases such as Fyn and c-Abl (Figure 
1)10-14.
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Tau from the AD brain is phosphorylated at eleven Ser/
Thr-Pro and nine Ser/Thr-X sites.  Proline-directed kinases 
such as GSK-3𝛽, Cdk5/p25, ERK2, and S6K phosphorylate 
Tau at Thr181, Ser202/T205, Thr212/S214, Thr231/
Ser235, and Ser396/Ser404 on Ser-Pro or Thr-Pro motifs in 
the regions flanking the repeat domains10-12.  Non-proline-
directed kinases such as MARK, SADK, PKA, and CaMKII 
phosphorylate Tau at Ser262, Ser 320, Ser324, and Ser356 
on KXGS motifs in the repeat domains (R1-R4)11,13,14.  Fyn 
and c-Abl, on the other hand, phosphorylate Tau at Tyr18 
and Tyr39411.

GSK-3𝛽 is abundantly expressed in the brain, 
preferentially in the hippocampus.  GSK-3𝛽 acts 
as the main executioner of Tau phosphorylation in 

PHFs15,16.  Intriguingly, GSK-3 accelerates the rate of Tau 
phosphorylation several-fold, if Tau is pre-phosphorylated 
by priming kinases such as non-proline-directed kinases17-19.  
Of Tau phosphorylation sites, Ser396 phosphorylation is 
a key step in the PHF formation20.  Once a priming kinase 
phosphorylates Tau at Ser404, GSK-3𝛽 phosphorylates Tau 
at Ser400, followed by sequential phosphorylation of Ser396 
(Figure 2)20.  GSK-3𝛽, alternatively, phosphorylates Tau at 
Ser202 directly, but Thr231 phosphorylation requires for 
Ser235 pre-phosphorylation20.

Interaction between Aβ and GSK-3β 
GSK-3𝛽 is originally in the active form.  When 

phosphorylated at Ser9, GSK-3𝛽 is inactivated, but when 
phosphorylated at Tyr216, GSK-3𝛽 activation is enhanced21.    

A𝛽 activates the non-receptor tyrosine kinase Fyn, 
to phosphorylate and activates GSK-3𝛽, leading to 
somatodendritic accumulation of phosphorylated Tau22.  
A𝛽1-42 phosphorylates GSK-3𝛽 at Tyr216 and promotes 
Tau phosphorylation in PC-12 cells23.  A𝛽, alternatively, 
activates GSK-3𝛽 by decreasing serine phosphorylation as 
a result of phosphoinositide 3-kinase (PI3K) inhibition/
inactivation24.  Chronic exposure of A𝛽 downregulates 
Akt phosphorylation, to activate GSK-3𝛽 and increase Tau 
phosphorylation25.  Soluble A𝛽 oligomers inhibit insulin 
signaling relevant to Akt activation, to activate GSK-3𝛽 
and increase Tau phosphorylation26.  Intracellular A𝛽1-

42 promotes Tau phosphorylation and induces neuronal 
loss27.  GSK-3𝛽 exacerbates A𝛽-induced neurotoxicity and 
cell death28.

Amyloid precursor protein (APP) intracellular domain 
(AICD), that is produced from 𝛾-secretase-mediated APP 
cleavage, activates GSK-3𝛽 29 or enters the nucleus and 
activates gene transcription, increasing the GSK-3𝛽 mRNA 
and protein30.  C-terminal fragments of APP stimulate 
GSK-3𝛽 activation, to increase Tau phosphorylation and 
induce apoptosis31. 

Regulation of GSK-3β and Tau phosphorylation
The serine/threonine protein kinases such as PKC𝜀32, 

Akt32, PKA33, integrin-linked kinase (ILK)34, CaMKII35, 
p90 ribosomal protein S6 kinase (p90RSK)36, and protein 
kinase C-related kinase 2 (Prk2)37 inactivate GSK-3𝛽 by 
directly phosphorylating at Ser9 (Figure 3).  Pyk238, that 
binds to SH2 and SH3 domain-containing proteins like Src 
kinases, and Fyn22 activate GSK-3𝛽 by phosphorylating at 
Tyr216 directly (Figure 3).

Akt1 is activated by being phosphorylated at Thr308 and 
Ser473 through the major pathway along a receptor tyrosine 
kinase (RTK)/insulin receptor substrate 1 (IRS-1)/PI3K/3-
phosphoinositide-dependent protein kinase 1 (PDK1)/Akt 
axis32.  Then, Akt inactivates GSK-3𝛽 by phosphorylating at 
Ser9 and restrains Tau phosphoryaltion32.  In the brain, 

Figure 1: Protein kinases relevant to Tau phosphorylation.  The 
proline-directed kinases GSK-3𝛽, Cdk5/p25, ERK2, and S6K and 
the non-proline-directed kinases MARK, SADK, PKA, and CaMKII 
phosphorylate Tau at the Ser/Thr residues.  The non-receptor 
tyrosine kinases Fyn and c-Alb phosphorylate Tau at the tyrosine 
residues.  

Figure 2: GSK-3𝛽 plays a critical role in PHF-Tau phosphorylation.  
Tau is initially phosphorylated by priming kinases such as non-
proline-directed kinases (non-PDK).  When GSK-3𝛽 activation is 
enhanced by A𝛽, GSK-3𝛽 accelerates Tau-Ser396 phosphorylation, 
responsible for PHTs and NHFs, causing AD.  
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insulin or insulin-like growth-factor 1(IGF1) binds to 
and activates the RTK insulin receptor involving GSK-3𝛽 
inactivation.   

AMP-activated protein kinase (AMPK) is also shown 
to phosphorylate and inactivate GSK-3𝛽39.  A𝛽1-42 
upregulates expression of adenylate kinase-1 (AK1), to 
inhibit AMPK, thereby leading to GSK-3𝛽 activation and 
Tau phosphorylation40.  A contradictory finding is that 
AMPK by itself phosphorylates Tau at Ser262 and induces 
tauopathy41.  Moreover, a specific agonist of sphingosine-1-
phosphate receptor 1 (S1PR1) linked to Gi protein reduces 
Tau-Ser262 phosphorylation in rat hippocampal slices42.  
This effect may be caused by AMPK𝛼 inactivation due 
to protein phosphatase 2A (PP2A) activation through a 
pathway along an S1PR1/Gi protein/(Cdc42/Rac1)/Pak1/

PP2A axis.

Aging, inflammation, and stress activate GSK-3𝛽, 
which triggers Tau phosphorylation, responsible for mild 
cognitive impairment (MCI), a preliminary group of AD 
(Figure 5).  A𝛽 further activates GSK-3𝛽 and accelerates Tau 
phosphorylation, leading to progression into AD from MCI 
(Figure 5)43,44.  Aggregation of hyperphosphorylated Tau 
causes tauopathies, a class of neurodegenerative diseases, 
that include frontotemporal dementia and parkinsonism 
linked to chromosome 17, progressive supranuclear palsy, 
Pick’s disease, and corticobasal degeneration as well as 
AD.  Agents that have the potential to suppress GSK-3𝛽 
activation, thus, could become beneficial preventive and 
therapeutic drugs for AD.  

Tau-targeting drugs 
A𝛽 and Tau serve as an initiator and an executor of AD, 

respectively45.  Current AD therapeutic approaches focus 
upon targeting Tau pathologies.  A variety of Tau-targeting 
drugs have been developed as follows: i) Hsp90 inhibitors 
such as geldanamycin, radicicol, and 17AAG, that degrade 
and dispose of hyperphosphorylated Tau46, ii) Inhibitors of 
A𝛽-induced Tau phosphorylation such as kamikihito, DHA, 
and curcumin47,48, iii) Tau aggregation inhibitors such as 
methylthioninium chloride and leucomethylthioninium, 
iv) O-GlcNAcase inhibitors49.  Tau is subjected to O-GlcNAc
transferase-mediated O-GlcNAcylation at the Ser/Thr
residues, that is the same sites as phosphorylation, and
O-GlcNAcase neutralizes Tau O-GlcNAcylation.  O-GlcNAcase
inhibitors, therefore, promote Tau O-GlcNAcylation, thereby 
preventing Tau phosphorylation and aggregation50, v) 
GSK-3𝛽 inhibitors such as pyrazine, the flavonoid morin, 
MMBO, the thiadiazolidinone derivative NP-12, and the 
traditional Chinese herbal medicine Angelica sinensis51-55, 
vi) mTOR inhibitors56,57.  A𝛽 activates mTOR, followed by
activation of S6K, that phosphorylates Tau at Ser262, Ser214, 
and Thr21212.  mTOR inhibitors, therefore, could prevent
Tau phosphorylation, vii) Inhibitors of Tau fibrillization
such as phenothiazine, the cyanine dye N744, polyphenol,
porphyrin, anthracyclines, phenylthiazolyl-hydrazide,

Figure 3: Inactivation and activation of GSK-3𝛽.  PKC𝜀, Akt, PKA, 
ILK, CaMKII, p90RSK, and Prk2 phosphorylate GSK-3𝛽 at Ser9 and 
inactivate GSK-3𝛽.  Pyk2 and Fyn phosphorylate GSK-3𝛽 at Tyr216 
and activate GSK-3𝛽.	

Figure 4: RTK-mediated GSK-3𝛽 inactivation.  Akt is activated 
through a pathway along a RTK/IRS-1/PI3K/PDK1/Akt axis and 
inactivate GSK-3𝛽 by phosphorylating at Ser9.

Figure 5: GSK-3𝛽 is a key factor for MCI and AD.  Aging, 
inflammation, and stress activate GSK-3𝛽 and phosphorylate Tau, 
causing MCI.  A𝛽 enhances GSK-3𝛽 activation and accelerates Tau 
phosphorylation, leading to progression into AD from MCI. 



Nishizaki T. J Neurol Neuromedicine (2017) 2(9): 1-8 Journal of Neurology & Neuromedicine

Page 4 of 8

rhodanine, and aminothienopyridazine58,59, and viii) 
microtubule stabilizing agents including natural products 
such as taxanes, epothilones, discodermolide, dictyostatin, 
eleutherobin, sarcodyctins, laulimalide, peloruside A, 
cyclostreptin, taccalonolides, zampanolide, dactylolide, 
ceratamines, dicumarol, jatrophanes, tubercidin, lutein, 
and davunetide, and synthetic agents such as GS-164, 
estradiol analogues, 5HPP-33, triazolopyrimidines, 
phenylpyrimidines, pyridopyridazines, pyridotriazines, 
and pyridazines60-62.  Successful results in the AD therapy, 
however, have not been obtained with any drugs as yet. 

8-[2-(2-Pentyl-cyclopropylmethyl)-cyclopropyl]-
octanoic acid (DCP- LA)

Several lines of evidence have pointed to the role of cis-
unsaturated free fatty acids (uFFAs) such as arachidonic, 
linoleic, linolenic, oleic, and docosahexaenoic acid in 
cognitive functions63-71.  Then, one would think that uFFAs 
might be available as an anti-dementia drug.  uFFAs, 
however, are promptly metabolized and decomposed 
before arriving in the brain, even though orally or 
intravenously taken into the body.  To address this issue, 
we have synthesized the linoleic acid derivative DCP-LA 
with cyclopropane rings instead of cis-double bonds, that 
exhibits stable bioactivities (Figure 6 A,B)72.  

DCP-LA induces a long-lasting facilitation of hippocampal 
synaptic transmission by enhancing presynaptic 𝛼7 ACh 
receptor responses to stimulate glutamate release under 
the control of PKC𝜀72-75.  In addition, DCP-LA activates 
CaMKII due to inhibition of protein phosphatase 1 (PP1), 
to enhance postsynaptic AMPA receptor responses and 
facilitate hippocampal synaptic transmission76. 

The facilitatory action of DCP-LA on hippocampal 
synaptic transmission accounts for improvement of 
A𝛽1-40- and mutant A𝛽-induced spatial learning deficits 
in rats77,78, scopolamine-induced spatial learning and 
memory disorders in rats77, spatial learning and memory 

deterioration in senescence accelerated mice 8 (SAMP8)79,80, 
and spatial learning and memory impairment in 5xFAD 
transgenic mice, an animal model of AD32.

PKC is classified into the conventional PKC isozymes 
𝛼, 𝛽I, 𝛽II, and 𝛾, the novel PKC isozymes 𝛿, 𝜀, 𝜂, and 𝜃, the 
atypical PKC isozymes 𝜄/𝜆 and 𝜁, and the PKC-like isozymes 
𝜇 and 𝜈.  All the PKCs have the phosphatidylserine (PS) 
binding site and are activated by diacylglycerol (DG).  Much 
interestingly, DCP-LA is capable of selectively activating 
PKC𝜀 in a Ca2+- and DG-independent manner81.  DCP-LA 
binds to the PS binding/associating sites Arg50 and Ile89 
in the C2-like domain of PKC𝜀, which are distinct from the 
DG binding site in the C1 domain, at the carboxyl-terminal 
end and the cyclopropane rings, respectively82.

 Racemic DCP-LA contains possible 4 diastereomers 
such as 𝛼,𝛼-, 𝛼,𝛽-, 𝛽,𝛼-, and 𝛽,𝛽-DCP-LA (Figure 6C).  To 
develop DCP-LA as a medical drug, each diastereomer was 
separated and each characteristic was examined.  Of 4 
diastereomers 𝛼,𝛽-DCP-LA activates PKC𝜀 selectively and 
stimulates presynaptic release of glutamate, dopamine, 
and serotonin, with the highest potency83.Of great interest 
is that DCP-PA serves as not only a selective PKC𝜀 activator 
but  a potent inhibitor of protein tyrosine phosphatase 1B 
(PTP1B).  DCP-LA inhibits PTP1B by its direct interaction84. 

DCP-LA efficiently inactivates GSK-3𝛽 and restrains 
Tau phosphorylation by cooperation of PKC𝜀 
activation and PTP1B inhibition

PKC𝜀, activated by DCP-LA, inactivates GSK-3𝛽 by directly 
phosphorylating at Ser9 (Figure 6)32.  Activated PKC𝜀, 
alternatively, activates Akt by directly phosphorylating 
at the serine residue, followed by inactivation of GSK-3𝛽 
(Figure 6)32. 

When activated, RTK phosphorylates its own receptor 
at Tyr1185 and activates IRS-1 by phosphorylating at 
Tyr1222.  Activated IRS-1 recruits and activates PI3K, which 
produces phosphatidylinositol 3,4,5-triphosphate (PIP3) 

Figure 6: Structure of DCP-LA.  DCP-LA has cyclopropane rings instead of cis-double bonds on linoleic acid (A,B).  Racemic DCP-LA 
contains possible 4 diastereomers such as 𝛼,𝛼-, 𝛼,𝛽-, 𝛽,𝛼-, and 𝛽,𝛽-DCP-LA (C).  
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by phosphorylating phosphatidylinositol 4,5-bisphosphate 
(PIP2).  PIP3 binds to and activates PDK1.  PI3K and/or PDK1 
activate Akt by phosphorylating at the serine and threonine 
residues.  RTK and IRS-1 are inactivated through PTP1B-
mediated tyrosine dephosphorylation.  DCP-LA-induced 
PTP1B inhibition, therefore, represses inactivation of RTK 
and IRS-1, allowing Akt activation through a RTK/IRS-1/
PI3K/PDK1/Akt pathway, to phosphorylate and inactivate 
GSK-3𝛽 (Figure 6)32.  

PKC𝜀 activation or PTP1B inhibition, thus, has the 
potential to restrain Tau phosphorylation by inactivating 
GSK-3𝛽 each independently.  Cooperation of PKC𝜀 
activation and PTP1B inhibition could inactivate GSK-3𝛽 
and restrain Tau phosphorylation more efficiently than 
each solitary treatment32.  In experiments using PC-12 
cells, PKC𝜀 overexpression and PTP1B deficiency activate 
Akt and inactivate GSK-3𝛽 synergistically32.  A𝛽1-42 activates 
GSK-3𝛽 by reducing Ser9 phosphorylation and increases 
Tau phosphorylation at Ser202/Thr205 and Ser396, and 
the effects of A𝛽1-42 are clearly neutralized by DCP-LA32.

5xFAD mice are widely used as an animal model of AD.  
5xFAD mice are APP/presenilin 1 (PS1) double transgenic 
mice that coexpress five familial forms of AD mutations 
such as the Swedish/London/Florida mutations and the 
M146L/L286V mutations85.  The A𝛽1-42 levels in the 5xFAD 
mouse brain increase in an age-dependent manner and 
spatial memory deficits are induced from 4-5 months 
of age85.  The significantly higher levels of GSK-3𝛽-Ser9 
phosphorylation is also found in the hippocampus of 
5xFAD mice from 4-5 months of age as compared with 
the levels for wild-type control mice, indicating that the 
GSK-3𝛽 activity is enhanced in 5xFAD mice, possibly in 
association with A𝛽1-42 increase86.  Moreover, a greater 
deal of Tau-Ser396 phosphorylation, responsible for PHF 
formation, is found in the hippocampus of 5xFAD mice86.  
DCP-LA suppresses GSK-3𝛽 activation and reduces Tau-
Ser396 phosphorylation in the hippocampus of 5xFAD mice 
to an extent similar to that for wild-type control mice32.  
DCP-LA, thus, enables efficient suppression of Tau-Ser396 
hyperphosphorylation by activating PKC𝜀 and inhibiting 
PTP1B simultaneously.

DCP-LA ameliorates spatial learning and memory 
decline in 5xFAD mice, that occurs in parallel with GSK-𝛽 
activation and an increase in Tau phosphorylation, but 
such effect is not obtained with galanthamine, that is 
clinically used for treatment of mild to moderate AD32.  
In addition, DCP-LA improves A𝛽1-40- and mutant A𝛽-
induced spatial learning deficits in rats77,78, scopolamine-
induced spatial learning and memory disorders in rats77, 
spatial learning and memory deterioration in senescence 
accelerated mice79,80.  DCP-LA-induced improvement of 
cognitive decline is not due to only inhibition of GSK-𝛽 
and restraint of Tau phosphorylation.  Facilitation of 

synaptic transmission in alive neurons would be required 
for improvement of cognitive decline.  DCP-LA has the 
potential to facilitate hippocampal synaptic transmission 
by enhancing presynaptic 𝛼7 ACh receptor responses under 
the control of PKC𝜀72-75 and postsynaptic AMPA receptor 
responses under the control of CaMKII in association with 
PP1 inhibition76.  This action of DCP-LA is also a strong 
advantage as an AD therapeutic drug as compared with Tau-
targeted drugs including GSK-𝛽 inhibitors.  Tau-targeted 
drugs proposed possess no direct facilitatory action on 
synaptic transmission, and therefore, early improvement 
of cognitive decline would not be expected by those drugs.

A beneficial effect on 5xFAD mice is obtained with 
oral administration of DCP-LA at a dose of 1 mg/kg body 
weight, corresponding to ~3 𝜇M.  This dose, in the light of 
the fact that the optimal concentration of DCP-LA in the in 
vitro experiments is 100 nM, seems to be appropriate and 
possible for clinical use.  Overall, DCP-LA may shed a beam 
of hope on AD prevention and treatment.  

Conclusion
Tau-targeted drugs for AD therapy under development 

include i) Hsp90 inhibitors, ii) inhibitors of A𝛽-induced 
Tau phosphorylation, iii) Tau aggregation inhibitors, iv) 
O-GlcNAcase inhibitors, v) GSK-3𝛽 inhibitors, vi) mTOR
inhibitors, vii) inhibitors of Tau fibrillization, and viii)
microtubule stabilizing agents.  The mechanism underlying
the inhibitory effect of DCP-LA on Tau phosphorylation is
distinct from that for any drugs provided until now.  DCP-
LA restrains Tau phosphorylation efficiently due to PKC𝜀-
mediated direct inactivation of GSK-3𝛽, to PKC𝜀/Akt-
mediated inactivation of GSK-3𝛽, and to RTK/IRS-1/PI3K/
PDK1/Akt-mediated inactivation of GSK-3𝛽 in association
with PTP1B inhibition.  Consequently, combination of PKC𝜀

Figure 7: DCP-LA-induced suppression of Tau phosphorylation.  
PKC𝜀, activated by DCP-LA, inactivates GSK-3𝛽 by phosphorylating 
Ser9 directly or through a PKC𝜀/Akt pathway, to restrain Tau 
phosphorylation (pTau). DCP-LA-induced PTP1B inhibition, 
alternatively, activates Akt through a RTK/IRS-1/PI3K/PDK1/Akt 
pathway by repressing tyrosine dephosphorylation of RTK and 
IRS-1, followed by Ser9 phosphorylation and inactivation of GSK-3
𝛽, to restrain Tau phosphorylation.  
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activation and PTP1B inhibition must be an innovative 
strategy for AD therapy.
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