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ABSTRACT

Sandhoff disease (SD) is an inherited lysosomal storage disease caused 
by a β-hexosaminidase deficiency involving excessive accumulation of 
undegraded substrates, including GM2 ganglioside, which leads to neurological 
symptoms, such as mental retardation, spasms and quadriplegia. Macrophage 
inflammatory protein-1α (MIP-1α) is a crucial factor for microglia-mediated 
neuroinflammation in the onset or progression of SD. However, there was 
no therapeutic approach to control the abnormal production of MIP-1α in 
the brain of SD, and the mechanisms underlying the MIP-1α production by 
microglia, especially the transmitter-mediated production, remains unclear.

Extracellular nucleotides, including uridine diphosphate (UDP), are leaked 
by injured or damaged neurons. It has been shown that the nucleotide leakage 
activates microglia to trigger chemotaxis, phagocytosis, macropinocytosis 
and cytokine production, suggesting that extracellular nucleotides may 
be important neurotransmitters for microglia to regulate their functions 
physiologically and pathologically.

In the present study, we review the essential roles of extracellular 
nucleotides in the microglial functions and the UDP-enhanced MIP-1α 
production by microglia in SD model mice, providing a potential therapeutic 
approach for SD.

Extracellular uridine diphosphate-mediated microglial inflammation 
in a mouse model of Sandhoff disease

Eri Kawashita1, Daisuke Tsuji2, Kohji Itoh2

1Department of Pathological Biochemistry, Kyoto Pharmaceutical University, Kyoto, Kyoto, Japan
2Department of Medicinal Biotechnology, Institute for Medicinal Research, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, 

Tokushima, Japan

Sandhoff disease 
Sandhoff disease (SD) is a progressive neurodegenerative 

disorder caused by deficiencies of β-hexosaminidase (Hex), HexA 
(αβ) and HexB (ββ), associated with a defect in the Hex β-subunit 
gene1,2. Both HexA and HexB can degrade the terminal β-linked 
N-acetylglucosamine residues of oligosaccharides, but only HexA
degrades GM2 ganglioside containing an N-acetylgalactosamine
residue. In SD patients, an excessive accumulation of undegraded
substrates, including GM2 ganglioside, is observed, particularly
within lysosomes in the neuronal cells, due to the deficiencies
of HexA and HexB, which leads to neurological symptoms in the
central nervous system (CNS), such as mental retardation, spasms
and quadriplegia. SD model mice (SD mice), established by means
of Hex β-subunit gene disruption, exhibit the accumulation of GM2
gangliosides throughout the CNS and the abnormalities in motor
functions, which are quite similar to those observed in SD patients3.
Several therapeutic approaches for SD have been investigated for
decades, including substrate reduction therapy4-6, bone marrow
transplantation7,8, stem cell therapy9,10, enzyme replacement
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therapy10-14, gene therapy15-17 and chaperon therapy18, 
where the aim is to reduce the accumulated substrates. 
However, the disease remains incurable. 

Microglia-mediated inflammation in the brains of SD 
patients and mice 

A progressive increase in microglial activation/
expansion and subsequent neuronal apoptosis have 
been observed in the brains of SD patients and mice, 
suggesting that microglial inflammation is likely involved 
in the neurodegenerative mechanism in SD8,19-21. We 
demonstrated that macrophage inflammatory protein-
1α (MIP-1α) is upregulated in the brains of SD mice from 
the age of 1 week, and in microglial cells derived from 
neonatal SD mice22,23. Wu and Proia also demonstrated 
that the deletion of MIP-1α expression results in not only a 
substantial decrease in macrophage/microglial-associated 
pathology together with neuronal apoptosis in SD mice, 
but also an increase in the life span of SD mice24. These 
studies suggest that MIP-1α is a crucial factor for microglia-
mediated neuroinflammation during the pathogenesis of 
SD, and the downregulation of the abnormal production 
of MIP-1α by microglia may be another approach to delay 
the onset or progression of SD. However, the mechanisms 
underlying the abnormal production of MIP-1α by 
microglia, especially the transmitter-mediated production, 
is still poorly understood.

Extracellular nucleotides as signals for microglial 
activation

Microglia exists in their resting ramified form in 
the CNS under normal conditions; however, they are 
transformed into the activated ameboid form when they 
recognize a pathological state in the brain25. Extracellular 
nucleotides, adenosine triphosphate and uridine 
diphosphate (ATP and UDP, respectively), are leaked from 
injured or damaged neuronal cells and activate microglia 
to trigger cytokine production, chemotaxis, phagocytosis 
and macropinocytosis. Extracellular ATP and UDP induce 
the expression or release of cytokines and chemokines, 
including TNF-α, MCP-1 and MIP-1α, in microglia26,27. ATP 
regulates the microglial branch dynamics in the intact 
brain, and the ATP leakage from the damaged tissue 
mediates a rapid microglial response towards injury28. 
UDP is an “eat-me” signal from the dying cells: microglia 
recognize the extracellular UDP leakage from damaged 
neuronal cells, leading to the removal of the dying cells or 
their debris29,30. The extracellular nucleotides modulate 
the cellular functions by activating P2 receptors, which are 
classified into ionotropic P2X receptors and metabotropic 
P2Y receptors. Microglia have been shown to express 
functional P2X4, P2X7, P2Y6 and P2Y12 receptors29. These 
studies suggest that extracellular nucleotide signaling may 
regulate microglia-mediated physiological or pathological 
events in the brain.

Enhancement of MIP-1α production by UDP in 
microglia from SD mice, mediated by the activation 
of P2Y6 receptor, ERK and JNK

We demonstrated that MIP-1α is prominently 
upregulated in the brain of SD mice22, and that the basal 
production of MIP-1α is higher in microglia derived from 
SD mice (SD-Mg) than in that from wild-type mice (WT-
Mg)23, suggesting that the higher MIP-1α production is 
due to the abnormal signal transduction caused by the 
deficiencies of HexA and HexB in SD-Mg as well as the 
effects of other neuronal cells, including neurons and 
astrocytes. We furthermore investigated whether or not 
extracellular nucleotides enhance the production of MIP-
1α by SD-Mg. We found that UDP induces the production 
of MIP-1α in SD-Mg but not WT-Mg, while ATP has no 
effect on the production of MIP-1α by WT- or SD-Mg31. The 
UDP leakage from the damaged neurons might enhance 
the MIP-1α production in microglia of SD mice to recruit 
other microglia to the damaged area, thereby resulting in 
a rapid microglial inflammation in the progression of SD. 
We also showed that SD-Mg is more strongly activated than 
WT-Mg due to the excessive accumulation of undegraded 
substrates, based on the observed increase in the IL-1β and 
TNF-α expression in SD-Mg compared with WT-Mg. The 
different activation states of WT- and SD-Mg may lead to 
differences in the response to UDP. 

UDP is a known ligand of the P2Y2 and P2Y6 receptors, 
in addition to the CysLT1 and CysLT2 receptors, which are 
receptors for cysteinyl leukotrienes; UTP that is converted 
from UDP by ecto-nucleoside diphosphokinase binds to 
P2Y2, P2Y4 and P2Y632. We demonstrated that UDP and 
potentially UTP converted from UDP induce the production 
of MIP-1α by SD-Mg via the P2Y6 receptor but not via the 
P2Y2, P2Y4, CysLT1 or CysLT2 receptors31. A recent study 
reported that P2Y6 receptors are present in neuronal cells 
as monomeric and dimeric forms33. The protein expression 
of the dimeric P2Y6 receptor as well as the mRNA 
expression of P2Y6 receptor were found to be increased 
in SD-Mg in comparison to WT-Mg, suggesting that the 
increase in the expression of dimeric P2Y6 receptor may 
cause the enhanced response of SD-Mg to UDP in MIP-
1α production compared with that of WT-Mg. We also 
confirmed that the activation of ERK and JNK was involved 
in the UDP-induced MIP-1α production in SD-Mg. Our 
previous study indicated that the activation of PLC, PKC, 
ERK and JNK mediates the enhanced production of MIP-1α 
in SD-Mg23. P2Y6 receptor couples to Gq protein to activate 
PLCβ and mobilize intracellular Ca2+ 34 and also modulates 
several cellular functions through the activation of ERK, 
JNK or PKC35,36. These findings suggest that the activation 
of PLC, PKC, ERK and JNK may be critical signaling events 
in the transmitter-induced abnormal production of MIP-1α 
in an autocrine or paracrine manner in SD-Mg.
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Enhancement of UDP-induced MIP-1α production by 
the disruption of the lipid rafts

The dimeric P2Y6 receptors are distributed in a 
non-raft microdomain and are thought to regulate 
the uracil nucleotide signaling33. Microdomains, such 
as lipid rafts, are known to be rich in cholesterol and 
glycosphingolipids including GM1 and GM3 gangliosides, 
where the gangliosides associate with receptors or signal 
transducers to modulate their functions. Glycosylation and 
deglycosylation have been reported to be responsible for the 
ganglioside composition of the plasma membrane37. GD3 
synthase and GM2/GD2 synthase double knockout mice 
have disordered lipid rafts and subsequent inflammation, 
suggesting that the ganglioside composition is critical 
in the maintenance of lipid rafts38. Our previous studies 
by immunoblotting and immunocytochemical analyses 
have demonstrated little difference in the distribution of 
flotillin-1, a raft marker, between WT- and SD-Mg, but the 
intensity of flotillin-1 was decreased in SD-Mg compared 
with WT-Mg, suggesting the disordered maintenance of the 
lipid rafts in SD-Mg31. Previous studies have shown the level 
of cholesterol in fibroblasts from Tay-Sachs variant GM2 
gangliosidosis to be similar to that of control fibroblasts39, 
and that the amounts of cholesterol and GM1 ganglioside 
in the brain did not differ significantly between the Hexb−/− 
and the Hexb+/− mice40. Thus, the disordered maintenance 
of the lipid rafts in SD-Mg might be caused by the altered 
ganglioside composition due to the failure to catalyze GM2 
to GM3 ganglioside, with no marked changes in the amounts 
of cholesterol or GM1 ganglioside. We found that the 
disruption of the lipid rafts by pretreatment with methyl-
β-cyclodextrin enhanced UDP-induced MIP-1α production 
in both WT- and SD-Mg, suggesting that lipid raft formation 
plays an important role in regulating the UDP-P2Y6 
receptor signaling31. The disordered maintenance of the 
lipid rafts in SD-Mg is likely not involved in the enhanced 
dimeric formation of P2Y6 receptors31, and therefore both 
the increase in the expression of the dimeric P2Y6 receptor 
and the disruption of the lipid rafts may independently 
cause the enhanced response of SD-Mg to UDP in MIP-1α 
production. 

Perspectives
A recent study demonstrated that UDP and UTP, as 

well as uridine, are detectable in the brain extracellular 
fluid obtained from freely moving rats, and the exposure 
of striatum to depolarizing concentrations of potassium 
chloride increases the level of the extracellular uracil 
nucleotides41. The extracellular uracil nucleotides 
have been shown to play roles in neural precursor cell 
proliferation and differentiation, and kainic acid-induced 
neuronal damage29,42. Furthermore, the uracil nucleotides 
are possibly involved in several neurological disorders, 
including epilepsy, cerebral ischemia, Alzheimer’s disease 

and amyotrophic lateral sclerosis43-46; however, the detailed 
roles of the uracil nucleotides in those diseases remain 
unclear and thus require further investigation. 

MIP-1α is a crucial factor for microglia-mediated 
neuroinflammation in the brain of SD mice, and the 
downregulation of the abnormal production of MIP-1α 
by microglia may delay the onset or progression of SD22-

24. The activation of EP2 and 4/cAMP/PKA signaling has
been shown as a potential target to control the abnormal
production of MIP-1α in SD-Mg47. Our findings additionally
provide a new therapeutic approach for SD; that is, the P2Y6
receptor antagonist is thought to be a potential therapeutic
target for reducing the UDP-enhanced MIP-1α production
in SD. This approach can be used for the other lysosomal
storage disease, including Tay-Sachs disease and Gaucher
disease, although further investigation of the involvement
of the uracil nucleotide signaling is required.
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