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ABSTRACT

Schizophrenia is a complex mental disorder that starts at early adulthood 
with a combination of positive and negative symptoms as well as cognitive 
impairments. It is well known that dendritic spine density and dendritic length 
of the pyramidal neurons of the prefrontal cortex (PFC) are reduced in the post-
mortem tissue of schizophrenia patients. In addition, the volume of the PFC is 
reduced in this mental disorder. A possible hypothesis for these morphological 
changes suggests that the disruption between PFC and hippocampus, at an 
early age is involved in the pathophysiology of schizophrenia. Furthermore, 
rats with bilateral lesion of the neonatal ventral hippocampus (nVHL) at an 
early age is an example of the initial disruption between hippocampus and 
PFC and also exhibits a reduction in the synaptic connections in the PFC. The 
present mini-review discusses the neurochemical and morphological changes 
in the PFC of rats that underwent nVHL, an animal model of schizophrenia.
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Introduction

Schizophrenia is a mental disorder (DSM-5) that affects 
approximately 1% of the world population. This disorder is not only 
devastating for the patient but also affects the family1. Its prognosis 
depends on the number of psychotic outbreaks, progression of 
cognitive impairments and response to neuroleptics. This psychotic 
disorder is characterized by the presence of symptoms classified 
as positive (increased locomotion in response to psychostimulants, 
hallucinations, delusions and thought disorders), negative (deficits in 
social interaction, anhedonia, and affective flattening, among others) 
and cognitive deficits (attention and memory deficits). In recent 
years, with the advancement in the image analysis and microscope 
systems, the neural morphological studies in postmortem tissue 
from schizophrenic patients have shown constant and critical 
changes in the prefrontal cortex (PFC), which may explain some of 
the symptoms observed in this complex disorder2. Moreover several 
animal models of schizophrenia have been developed over the past 
20 years. Although there is no animal model that can replicate all 
aspects of complexity that occurs in schizophrenia, but they can 
correlate changes in the animal behavior with the classification 
of the symptoms of schizophrenia. An increased expression of a 
behavior is a positive symptom, such as increased locomotor activity 
in a new environment. Negative symptoms involve reduction in 
certain behaviors, such as grooming. In addition, some behaviors 
may relate directly, such as deficits in social interaction, attention 
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and memory. One of the most frequently used animal model 
of schizophrenia is the neonatal ventral hippocampus 
lesion (nVHL)1,3. In the present mini-review, we discuss 
neurochemical and morphological changes in the PFC as 
reported in the nVHL rat.  

Prefrontal cortex connections in schizophrenia
Numerous studies from different domains (clinical, 

postmortem, neuroanatomical and physiological) link 
the PFC with the pathophysiology of schizophrenia1,4. 
Indeed, the PFC is a complex region of sensorimotor 
and emotional integration, which participates in several 
cognitive functions such as attention processing, spatial 
memory, decision making etc.  This cortical region receives 
glutamatergic projections from thalamus (dorsomedial 
nucleus), hippocampus and basolateral amygdala (BLA)1; 
dopaminergic projections from the ventral tegmental area 
(VTA); serotonergic projections from the median raphe 
nucleus; noradrenergic projections from locus coeruleus 
and cholinergic projections from basal forebrain. To 
close the circuit, PFC sends glutamatergic projections 
to nucleus accumbens (NAcc), CA1 region of the ventral 
hippocampus, BLA, VTA, and thalamus. Moreover, a recent 
report suggests that the connection among the PFC, the 
lateral hypothalamus (LH) and the periaqueductal gray 
matter (PAG) together with the brainstem nuclei form a 
circuit that regulates the expression of positive emotions5. 
Interestingly, schizophrenic patients fail to express positive 
or negative emotions and are also unable to recognize 
emotions when presented with various faces6,7, hence 
it is possible to suggest that the PFC-LH-PAG circuit is 
dysfunctional in patients with schizophrenia.

It has been suggested that the connections between 
the thalamus and PFC are made during fifth month 
of gestation in humans, while the connections among 
the ventral hippocampus, BLA and PFC start to form 
at seventh month of gestation. Several reports suggest 
that the disruption between PFC and hippocampus at an 
early age is involved in the etiology of schizophrenia8- 10. 
Rats that underwent nVHL at postnatal day (PND) 7 is an 
example of the early disruption between hippocampus and 
PFC1,3,8. Furthermore, this animal model shows behavioral, 
neurochemical and morphological changes that manifest 
mainly after puberty1,3,11. 

The nVHL Animal Model 
The nVHL rat is considered to be a neurodevelopmental 

model of schizophrenia1,3. This model was conceived by 
Lipska and Weinberger in the 1990’s to address questions 
that pharmacological models could not answer12. First, the 
nVHL rat presents a disruption in the connections between 
the PFC and hippocampus in a critical postnatal period. 
Second, as stated in O’Donnell et al.,13 “the periadolescent 
period is critical for maturation of PFC circuits” and 

recent research strongly suggests that adolescence is a 
critical period for functional organization in the PFC with 
high rate of synaptic pruning14. Indeed, juvenile nVHL 
rats present normal behaviors when compared to sham 
animals12,15 suggesting that the structural changes occur at 
this age. Third, after puberty, a constellation of behavioral, 
neurochemical and neuroanatomical changes are apparent 
in the nVHL rat1. The nVHL rat presents normal behaviors 
until the age of young adult as observed in schizophrenic 
patients. Therefore this animal model is suitable to further 
our understanding of this complex disorder. 

Neurochemical and neuromorphological changes in 
the nVHL rat 

The nVHL induces a constellation of neurochemical and 
neuronal alterations in the PFC as discussed below. 

Neurochemical alterations: Overactivity of dopamine 
(DA) and glutamate in the mesolimbic system is the major 
working hypothesis of the etiology of schizophrenia1, 16, 17. In 
this regard, while Alquicer et al. (2004)18 observed reduced 
DA content in the PFC, exogenous application of SKF38393, 
a D1 agonist, increases cell firing of PFC pyramidal cells of 
the nVHL rat19. SKF38393 selectively increases the release 
of acetylcholine in the PFC of the nVHL rat at post-pubertal 
age20. Whereas ventral tegmental area (VTA) stimulation 
increased cell firing in the PFC of the nVHL rat13. In a food 
paradigm in vivo, the nVHL rat maintains DA outflow for 
a longer period of time in the PFC21. Moreover, the nVHL 
rat presents enhanced sensibility to the DA agonist, 
amphetamine1. Regarding the glutamatergic system, the 
nVHL rats present hyperresponsiveness to MK-801, an 
n-methyl-D-Aspartate (NMDA) glutamatergic antagonist,
showing no apparent changes in the expression of
glutamatergic receptors15 Moreover, bath applications of
NMDA also increases cell firing in the PFC of the nVHL rat13.
The present data show hyper- and hypo-activity of DA in
the PFC of the nVHL rat is observed most likely derived
from contextual factors. Therefore, abnormal DA and
glutamate systems alter the response to environmental or
pharmacological challenges in the nVHL rat.

The inhibitory aminoacid gamma-aminobutyric 
acid (GABA) is consistently reduced in cortical areas in 
postmortem brains of schizophrenic patients22. Moreover, 
an abnormal balance between excitation and inhibition 
is commonly observed in psychiatric disorders17. In clear 
contrast, imaging studies have shown mixed results 
(increased, decreased or unaltered GABA levels23). Despite 
of the importance of GABA in the PFC, investigations of the 
levels or activity of GABA in the PFC of the nVHL rat has 
been minimal. Recently, Ryan et al.24 showed no significant 
difference in vesicular GABA transporter in the PFC of adult 
nVHL rat. However, further research is certainly warranted.
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Nitric oxide (NO) is an inter- and intra-cellular 
messenger25 involved in physiological processes including 
synaptic and neuronal plasticity26. Moreover, schizophrenic 
subjects present increased level of plasma NO27. The 
nVHL rat also presents increased levels of NO28 as well as 
increased nitric oxide synthase (NOS) immunostaining 
in the PFC29. In fact, NO has emerged as a key player to 
understand the neurochemical abnormalities observed in 
the nVHL rat. It has been established that NO interacts with 
DA and glutamate neurotransmitters30. 

Animals that underwent the nVHL also present 
dysregulated proteins such as clathrin light chain B, a protein 
important for the expression of synaptophysin after puberty31; 
low level of nerve growth factor inducible-B mRNA32 and 
reduced expression of brain-derived neurotrophic factor 
(BDNF) mRNA33. In apparent agreement, patients with 
schizophrenia also exhibit these neurochemical alterations 
in the PFC including low expression of synaptophysin34 and 
decreased immunoreactivity to BDNF35,36.. Consequently, all 
these neurotransmitters, growth factors and proteins have an 
impact on the synaptic connections that ultimately reshape 
neurons in the PFC.  

Neuromorphological alterations 

In postmortem brains of patients with schizophrenia, 
Garey et al.37 observed reduced spine number in PFC layer 
III pyramidal neurons. While Koleske38 indicated that 
the shape of dendritic arbor determines the number and 
distribution of receptive synaptic contacts; Fiala et al.,39 
suggested that the dendritic spines are the main sites of 
excitatory input. Therefore alterations in spine density 
or dendritic arbor are associated with gain or loss of 
connectivity. Our group has shown a decrease in dendritic 
length and dendritic spines not only in the PFC layer V but 
also layer III in the nVHL rat28,40,41. The neuronal hypotrophy 
observed in PFC neurons has been associated with lack of 
input from the ventral hippocampus at a critical stage of 
development1.

Earlier disconnection (PD7 – PD9) of the ventral 
hippocampus and PFC pathway causes behavioral, 
neurochemical and neuromorphological changes after 
puberty or in early adulthood, which does not manifest 
itself if the damage had occurred before PD1442. All this 
implies that there is a window of time in which the injury 
of this pathway may cause permanent damage. Moreover, 
the neonatal lesion of PFC, also causes changes in behavior, 
neurochemistry and morphology40,43-45, however these 
changes are not as copious as in the case of nVHL animals. 
Interestingly, at adult age, lesion of the PFC in nVHL animals, 
ameliorate behavioral changes46. Moreover, earlier lesion 
of VH altered the physiological response of PFC pyramidal 
neurons after puberty, which exhibited excessive firing in 
response to mesocortical stimulation13. Therefore, earlier 

disruption of the VH and PFC pathway affected the function 
of PFC after puberty, such as reduced levels of the BDNF in 
the PFC of the nVHL rats47.

Conclusions
The nVHL rat presents neurochemical and 

neuroanatomical alterations in the PFC similar to those 
observed in schizophrenic patients. Early on, O’Donnell48 
stated that “disinhibited PFC could be responsible for 
cognitive deficits observed in schizophrenia”. Moreover, 
PFC refinement occurs during late adolescence49 and the 
behavioral deficits in this animal model are also observed 
only after this period. Further investigations in this animal 
model are required to understand the pathology of this 
devastating disorder as well as to test potential novel 
drugs for the treatment of different deficits observed in 
schizophrenia.  
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