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ABSTRACT

Antisocial behavior in youths constitutes a major public health problem 
worldwide. Conduct disorder is a severe variant of antisocial behavior with higher 
prevalence rates for boys (12%) as opposed to girls (7%). A better understanding 
of the underlying neurobiological mechanisms of conduct disorder is warranted 
to improve identification, diagnosis, or treatment. Functional and structural 
neuroimaging studies have indicated several key brain regions within the limbic 
system and prefrontal cortex that are altered in youths with conduct disorder. 
Examining the structural connectivity, i.e. white matter fiber tracts connecting 
these brain areas, may further inform about the underlying neural mechanisms. 
Diffusion tensor imaging (DTI) is a non-invasive technique that can evaluate the 
white matter integrity of fiber tracts throughout the brain. To date, DTI studies have 
found several white matter tracts that are altered in youths with conduct disorder. 
However, a majority of these studies have focused on male or mixed-gender groups, 
and only a few studies have specifically investigated white matter alterations in 
girls with conduct disorder. Ultimately, studies that directly compare boys and girls 
with conduct disorder are necessary to identify possible sexual dimorphic neural 
alterations and developmental trajectories of conduct disorder in youths.

Introduction
Antisocial behavior in children and adolescents is associated with 

significant societal, clinical, and economic consequences and is therefore 
considered a major public health burden worldwide. Youths with severe 
aggressive and antisocial behavior outside of the age-appropriate 
norm qualify for a diagnosis of conduct disorder. Conduct disorder is 
characterized by a repetitive and persistent pattern of behavior in which 
the basic rights of others or societal norms or rules are violated1. The life 
time prevalence of conduct disorder is estimated to be around 7% and 
12%, for girls and boys respectively2. Furthermore, conduct disorder 
is thought to be very heterogeneous and several subtypes have been 
suggested (e.g. with or without callous-unemotional traits3). Particularly 
youths with severe subtypes of conduct disorder are at higher risk for 
persistent antisocial behavior and criminality in adulthood, and thus at 
great risk for developing antisocial personality disorder later in life1,4. 
Previous studies have suggested that an increased understanding of the 
neurobiological basis of conduct disorder and its subtypes in youths 
may increase the modest treatment success of current intervention 
methods5. So far, research studies using functional and structural 
neuroimaging techniques have identified dysfunctions and structural 
alterations within a set of cortical and subcortical brain regions. Cortical 
brain regions that are often identified as being altered in conduct 
disorder by voxel-based approaches include gray matter structures 
of the limbic system (e.g. amygdala, insula, and cingulate cortex) and 
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prefrontal cortex6-12. The limbic system is important for 
various processes in human social behavior that are often 
impaired in youths with conduct disorder, such as emotion 
processing and regulation9. The prefrontal cortex (PFC) 
plays a significant role in cognitive control by means of 
attention and decision-making over the simple and more 
automatic behaviors13. The amygdala and prefrontal cortex 
are bi-directionally interconnected through white matter 
tracts of the prefrontal-limbic circuitry14. Investigating the 
functional and structural connectivity of this circuitry could 
give more insight in the etiology of conduct disorder15-17. 

Brain connectivity in conduct disorder
In line with individual reports, meta-analyses have 

summarized that brain regions commonly affected in 
conduct disorder are part of specific neural networks, 
specifically the emotion processing and regulation network 
(see figure 1)18,19. Brain areas within those networks are 
functionally and structurally interconnected with one 
another by anatomical white matter tracts consisting 
of abundant thin myelinated axons. Thus far, studies 
investigating functional brain connectivity in youths with 
severe antisocial behavior have found a reduced functional 
connectivity between the amygdala and two regions of 
the prefrontal cortex, namely the ventromedial prefrontal 
cortex7 and the orbitofrontal cortex17,20. Consequently, 
researchers have hypothesized that the observed reduced 
amygdala–PFC connectivity is correlated with abnormal 
white matter structures in these youths15,21. Although 
functional networks help to identify the neural dynamics 
between brain areas, it cannot inform about the actual 
structural architecture. Hence, investigating white matter 
tracts will be an important step toward understanding 
the dysfunctional neural interplay and connectivity that 
contribute to conduct disorder.

Diffusion Tensor Imaging
A commonly used neuroimaging technique allowing the 

investigation of the microstructural properties of white-
matter is diffusion tensor imaging (DTI). DTI is based 
on the three-dimensional diffusion of water molecules 
that is measured through multiple-directional diffusion-
weighting gradient pulses. Hereby, specific features of this 
diffusivity are translated into tensors using mathematical 
equations based on the eigenvectors and eigenvalues within 
each voxel22. The most commonly used tensors to inform 
about microstructural integrity of white matter tracts are 
the fractional anisotropy (FA) and mean diffusivity (MD), 
which measure the anisotropic fraction of diffusivity and 
the diffusion magnitude respectively23. Other tensors 
occasionally used in DTI studies are axial diffusivity 
(magnitude of fastest diffusion direction) and radial 
diffusivity (diffusion magnitude of transverse direction)24. 
In order to analyze group differences, researchers either 
employ tract-based spatial statistics (TBSS)25, voxel-based 
analysis, or fiber tractography. 

Altered white matter structures in conduct disorder
DTI has aided studies investigating white matter 

structures in children and adolescents with conduct 
disorder, however, many discrepancies exist between 
the results of these studies. For example, DTI studies 
have identified increased fractional anisotropy in the 
uncinate fasciculus21,26-28 and corpus callosum29,30 of 
children and adolescents with conduct problems, while 
others observed decreased white matter integrity in the 
same white matter tracts26,31, as well as in the corona 
radiata, superior longitudinal fasciculus, fronto-occipital 
fasciculus, stria terminalis, and cerebellar peduncle31,32. 
Most studies vary in regard to the precise tract or set of 
tracts identified, and some do not detect white matter 
alterations at all20,33,34. Thus far, there is no clear picture 
about the underlying tract-based phenotype of antisocial 
behavior to date. Similar discrepancies exist when 
following-up on the relationship of specific DTI tensors 
in relation to behavioral severity of conduct disorder, 
such as psychopathic traits, callous unemotional traits, 
and amount of conduct disorder symptoms31,32,35-37. Some 
identify positive correlations35,37, while others reported 
negative31,32 or no correlations at all29. These inconsistent 
findings regarding the direction and location of white mater 
alterations may result from differences in the analysis 
approaches used (e.g. TBSS, voxel-based analysis, or fiber 
tractography), small sample sizes, or group heterogeneity. 
Especially group heterogeneity is of importance when 
investigating antisocial behavior. The inclusion of youths 
can be defined based on different diagnostic criteria; some 
studies investigated only oppositional defiant disorder, 
while others focused on conduct disorder or a mixture of 
both. These heterogeneities were previously mentioned in 

Figure 1. Schematic overview of brain regions commonly affected in 
conduct disorder: amygdala, insula, dorsomedial prefrontal cortex 
(dmPFC), and the orbitofrontal cortex (OFC).
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a recent review38, however, we suggest another important 
factor in antisocial behavior, namely sex. So far, most DTI 
studies have included only male or mixed-gender groups 
of youths with antisocial behavior. These factors could 
explain why study results differ in regard to the observed 
neural alterations. 

Sex differences and conduct disorder
Since most DTI studies have focused solely on male or 

mix-gender groups, it is unclear whether girls with conduct
disorder also show similar white matter alterations as
observed in boys21,30-32. So far only one study has directly
investigated white matter alterations between adolescent
boys and girls with conduct disorder and found sex
differences for fractional anisotropy, i.e. higher in males
within the bilateral uncinate fasciculus28. Another study
investigating pre-adolescents with conduct problems
indicated no sex differences for fractional anisotropy,
but did observe a stronger relationship between conduct
disorder symptoms and altered white matter integrity (i.e.
axial diffusivity) in several tracts, for example the uncinate
fasciculus in girls in comparison to boys35. Since the
uncinate fasciculus interconnects the orbitofrontal cortex
and amygdala, this major white matter tract has often been
associated with antisocial behavior9,16,17. A recent DTI study
indicated white matter alterations on a whole-brain level
within a homogenous group of girls with conduct disorder29.
Compared to typically developing girls, girls with conduct
disorder had increased FA bilaterally within the body of the
corpus callosum expanding towards the right cingulum and
left corona radiata, independent of age, intelligence, and
attention deficit hyperactivity disorder29. These findings
align with the study of Zhang and colleagues (2014) who
demonstrated FA increases within the body and genu of the
corpus callosum of male adolescents with conduct disorder
using a TBSS-approach. The corpus callosum has abundant
projections to and from the hemispherical cortices, and
thus is crucial for interhemispheric communication.
The genu and body are subsections of this white matter
tract and interconnect parts of the frontal, temporal,
and parietal lobes that play an important role in motoric
processes, executive functioning, and emotion processing39.
Alterations of the corpus callosum are also linked to several
other neuropsychiatric disorders, such as attention deficit
hyperactivity disorder40,41, autism42,43, Tourette syndrome44,
or developmental dyslexia45. Sex differences in psychiatric
disorders46,47, e.g. prevalence rates, symptoms, chronicity,
and recurrence, are not uncommon and are mostly based
on genetic differences. Likewise, there are known sex
differences in the behavioral phenotype and developmental
trajectories of conduct disorder as revealed by previous
epidemiological studies48,49. Consequently, this heightens
the possibility of observing similar sex-dependent
characteristics in the brain. So far, only few neuroimaging

studies have directly and indirectly investigated sex 
differences in youths with conduct disorder on a neural 
level28,29,50, which is likely caused by the lower prevalence-
rate of conduct disorder in girls2. Therefore, an increase 
in large-site or multicenter studies is needed in order to 
increase the direct comparison between boys and girls 
with conduct disorder on a whole-brain level and identify 
possible sexual dysmorphic neural alterations. Secondly, 
longitudinal studies allow researchers to investigate the 
developmental trajectories of conduct disorder in children 
and adolescents. An increased understanding about 
sex-differences may lead to the development of future 
customized intervention programs.

Methodological challenges and gaps in knowledge
Tensor measurements such as FA or MD inform 

researchers about the white matter integrity of the 
fiber tracts. However, it remains difficult to interpret the 
meaning of these measures on a neuronal or behavioral 
level. For example, reduced MD may indicate increased 
myelination or more compact white matter tracts, however, 
various other factors (e.g. fiber crossings) may play a role 
as well22. Moreover, it remains difficult for even the most 
advanced programs to determine which brain regions 
each fiber tract connects to, and even then an altered FA 
or MD does not automatically indicate an enhanced or 
diminished activation within that brain region, but merely 
indicates alterations within the connectivity between brain 
areas. Therefore, to understand the impact of white matter 
alterations in conduct disorder, the relationship between 
fiber tracts and behavior needs further investigation using 
advanced neuroimaging techniques in both humans and 
animal models. Also, indirect correlations with healthy 
participants can inform the scientific field more about 
factors influencing the development of conduct disorder. 

Summary
Neuroimaging studies have indicated several key 

brain regions within the limbic system (e.g. amygdala and 
insula) and prefrontal cortex (e.g. orbitofrontal cortex and 
ventromedial prefrontal cortex) that display alterations of 
gray matter volume and brain activity in youths with severe 
antisocial behavior. These brain regions are interconnected 
through white matter fiber tracts. Examining these 
tracts enhances the understanding how altered neural 
connectivity is linked to conduct disorder. DTI is a useful 
neuroimaging technique for researchers to non-invasively 
investigate the white matter integrity of fiber tracts 
throughout the brain. Nevertheless, to date DTI findings 
are inconsistent regarding the direction and location of 
white mater alterations in youths with severe antisocial 
behavior. These discrepancies are likely caused by the 
heterogeneity of the samples included in each study. The 
inclusion of homogeneous or separate samples regarding 
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sex and clinical diagnosis is therefore recommended for 
DTI studies that investigate the relationship between white 
matter alterations and conduct disorder. Furthermore, 
an increase in large-scale or multicenter studies using 
longitudinal approaches enhances the possibility to inform 
about gender specific developmental characteristics. In 
this manner, DTI studies can further our knowledge of 
the underlying neurobiological mechanism of antisocial 
behavior which can aid the development of effective 
prevention and intervention programs.
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